Vulnerabilities > CVE-2018-8218 - Improper Input Validation vulnerability in Microsoft Windows 10 and Windows Server 2016
Attack vector
NETWORK Attack complexity
LOW Privileges required
LOW Confidentiality impact
NONE Integrity impact
NONE Availability impact
HIGH Summary
A denial of service vulnerability exists when Microsoft Hyper-V Network Switch on a host server fails to properly validate input from a privileged user on a guest operating system, aka "Windows Hyper-V Denial of Service Vulnerability." This affects Windows 10, Windows 10 Servers.
Vulnerable Configurations
Part | Description | Count |
---|---|---|
OS | 2 |
Common Weakness Enumeration (CWE)
Common Attack Pattern Enumeration and Classification (CAPEC)
- Buffer Overflow via Environment Variables This attack pattern involves causing a buffer overflow through manipulation of environment variables. Once the attacker finds that they can modify an environment variable, they may try to overflow associated buffers. This attack leverages implicit trust often placed in environment variables.
- Server Side Include (SSI) Injection An attacker can use Server Side Include (SSI) Injection to send code to a web application that then gets executed by the web server. Doing so enables the attacker to achieve similar results to Cross Site Scripting, viz., arbitrary code execution and information disclosure, albeit on a more limited scale, since the SSI directives are nowhere near as powerful as a full-fledged scripting language. Nonetheless, the attacker can conveniently gain access to sensitive files, such as password files, and execute shell commands.
- Cross Zone Scripting An attacker is able to cause a victim to load content into their web-browser that bypasses security zone controls and gain access to increased privileges to execute scripting code or other web objects such as unsigned ActiveX controls or applets. This is a privilege elevation attack targeted at zone-based web-browser security. In a zone-based model, pages belong to one of a set of zones corresponding to the level of privilege assigned to that page. Pages in an untrusted zone would have a lesser level of access to the system and/or be restricted in the types of executable content it was allowed to invoke. In a cross-zone scripting attack, a page that should be assigned to a less privileged zone is granted the privileges of a more trusted zone. This can be accomplished by exploiting bugs in the browser, exploiting incorrect configuration in the zone controls, through a cross-site scripting attack that causes the attackers' content to be treated as coming from a more trusted page, or by leveraging some piece of system functionality that is accessible from both the trusted and less trusted zone. This attack differs from "Restful Privilege Escalation" in that the latter correlates to the inadequate securing of RESTful access methods (such as HTTP DELETE) on the server, while cross-zone scripting attacks the concept of security zones as implemented by a browser.
- Cross Site Scripting through Log Files An attacker may leverage a system weakness where logs are susceptible to log injection to insert scripts into the system's logs. If these logs are later viewed by an administrator through a thin administrative interface and the log data is not properly HTML encoded before being written to the page, the attackers' scripts stored in the log will be executed in the administrative interface with potentially serious consequences. This attack pattern is really a combination of two other attack patterns: log injection and stored cross site scripting.
- Command Line Execution through SQL Injection An attacker uses standard SQL injection methods to inject data into the command line for execution. This could be done directly through misuse of directives such as MSSQL_xp_cmdshell or indirectly through injection of data into the database that would be interpreted as shell commands. Sometime later, an unscrupulous backend application (or could be part of the functionality of the same application) fetches the injected data stored in the database and uses this data as command line arguments without performing proper validation. The malicious data escapes that data plane by spawning new commands to be executed on the host.
Nessus
NASL family | Windows : Microsoft Bulletins |
NASL id | SMB_NT_MS18_JUN_4284819.NASL |
description | The remote Windows host is missing security update 4284819. It is, therefore, affected by multiple vulnerabilities : - An elevation of privilege vulnerability exists when the (Human Interface Device) HID Parser Library driver improperly handles objects in memory. An attacker who successfully exploited this vulnerability could run processes in an elevated context. (CVE-2018-8169) - A denial of service vulnerability exists when Microsoft Hyper-V Network Switch on a host server fails to properly validate input from a privileged user on a guest operating system. An attacker who successfully exploited the vulnerability could cause the host server to crash. (CVE-2018-8218) - A memory corruption vulnerability exists when Windows Media Foundation improperly handles objects in memory. An attacker who successfully exploited the vulnerability could install programs; view, change, or delete data; or create new accounts with full user rights. There are multiple ways an attacker could exploit the vulnerability, such as by convincing a user to open a specially crafted document, or by convincing a user to visit a malicious webpage. The security update addresses the vulnerability by correcting how Windows Media Foundation handles objects in memory. (CVE-2018-8251) - A denial of service vulnerability exists when Windows improperly handles objects in memory. An attacker who successfully exploited the vulnerability could cause a target system to stop responding. (CVE-2018-8205) - An denial of service vulnerability exists when Windows NT WEBDAV Minirdr attempts to query a WEBDAV directory. An attacker who successfully exploited the vulnerability could cause a denial of service. (CVE-2018-8175) - An information disclosure vulnerability exists when the Windows GDI component improperly discloses the contents of its memory. An attacker who successfully exploited the vulnerability could obtain information to further compromise the users system. There are multiple ways an attacker could exploit the vulnerability, such as by convincing a user to open a specially crafted document, or by convincing a user to visit an untrusted webpage. The security update addresses the vulnerability by correcting how the Windows GDI component handles objects in memory. (CVE-2018-8239) - A remote code execution vulnerability exists when HTTP Protocol Stack (Http.sys) improperly handles objects in memory. An attacker who successfully exploited this vulnerability could execute arbitrary code and take control of the affected system. (CVE-2018-8231) - An information disclosure vulnerability exists when the Windows kernel improperly initializes objects in memory. (CVE-2018-8121) - A security feature bypass vulnerability exists in Device Guard that could allow an attacker to inject malicious code into a Windows PowerShell session. An attacker who successfully exploited this vulnerability could inject code into a trusted PowerShell process to bypass the Device Guard Code Integrity policy on the local machine. (CVE-2018-8201, CVE-2018-8211, CVE-2018-8212, CVE-2018-8215, CVE-2018-8221) - An information disclosure vulnerability exists when Microsoft Edge improperly handles objects in memory. An attacker who successfully exploited the vulnerability could obtain information to further compromise the users system. (CVE-2018-8234) - An Elevation of Privilege vulnerability exists when Cortana retrieves data from user input services without consideration for status. An attacker who successfully exploited the vulnerability could execute commands with elevated permissions. (CVE-2018-8140) - A denial of service vulnerability exists in the HTTP 2.0 protocol stack (HTTP.sys) when HTTP.sys improperly parses specially crafted HTTP 2.0 requests. An attacker who successfully exploited the vulnerability could create a denial of service condition, causing the target system to become unresponsive. (CVE-2018-8226) - A remote code execution vulnerability exists in the way that the scripting engine handles objects in memory in Internet Explorer. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. (CVE-2018-8267) - An information disclosure vulnerability exists when the Windows kernel improperly handles objects in memory. An attacker who successfully exploited this vulnerability could obtain information to further compromise the users system. (CVE-2018-8207) - An elevation of privilege vulnerability exists when NTFS improperly checks access. An attacker who successfully exploited this vulnerability could run processes in an elevated context. (CVE-2018-1036) - A remote code execution vulnerability exists in Windows Domain Name System (DNS) DNSAPI.dll when it fails to properly handle DNS responses. An attacker who successfully exploited the vulnerability could run arbitrary code in the context of the Local System Account. (CVE-2018-8225) - A security feature bypass vulnerability exists when Microsoft Edge improperly handles requests of different origins. The vulnerability allows Microsoft Edge to bypass Same-Origin Policy (SOP) restrictions, and to allow requests that should otherwise be ignored. An attacker who successfully exploited the vulnerability could force the browser to send data that would otherwise be restricted. (CVE-2018-8235) - A remote code execution vulnerability exists in the way that the Chakra scripting engine handles objects in memory in Microsoft Edge. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. (CVE-2018-8227, CVE-2018-8229) - A remote code execution vulnerability exists when Microsoft Edge improperly accesses objects in memory. The vulnerability could corrupt memory in such a way that enables an attacker to execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. (CVE-2018-8111, CVE-2018-8236) - An information disclosure vulnerability exists when Windows allows a normal user to access the Wireless LAN profile of an administrative user. An authenticated attacker who successfully exploited the vulnerability could access the Wireless LAN profile of an administrative user, including passwords for wireless networks. An attacker would need to log on to the affected system and run a specific command. The security update addresses the vulnerability by changing the way that Windows enforces access permissions to Wireless LAN profiles. (CVE-2018-8209) - A remote code execution vulnerability exists when Internet Explorer improperly accesses objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. (CVE-2018-0978) - An elevation of privilege vulnerability exists when Windows Hyper-V instruction emulation fails to properly enforce privilege levels. An attacker who successfully exploited this vulnerability could gain elevated privileges on a target guest operating system. The host operating system is not vulnerable to this attack. This vulnerability by itself does not allow arbitrary code to be run. However, the vulnerability could be used in conjunction with one or more vulnerabilities (e.g. a remote code execution vulnerability and another elevation of privilege) that could take advantage of the elevated privileges when running. The update addresses the vulnerability by correcting how privileges are enforced by Windows Hyper-V instruction emulation. (CVE-2018-8219) - An information disclosure vulnerability exists when Edge improperly marks files. An attacker who successfully exploited this vulnerability could exfiltrate file contents from disk. For an attack to be successful, an attacker must persuade a user to open a malicious website. The security update addresses the vulnerability by properly marking files. (CVE-2018-0871) - A denial of service vulnerability exists in the way that the Windows Code Integrity Module performs hashing. An attacker who successfully exploited the vulnerability could cause a system to stop responding. Note that the denial of service condition would not allow an attacker to execute code or to elevate user privileges. However, the denial of service condition could prevent authorized users from using system resources. An attacker could host a specially crafted file in a website or SMB share. The attacker could also take advantage of compromised websites, or websites that accept or host user-provided content or advertisements, by adding specially crafted content that could exploit the vulnerability. However, in all cases an attacker would have no way to force users to view the attacker-controlled content. Instead, an attacker would have to convince users to take action, typically via an enticement in email or instant message, or by getting them to open an email attachment. The security update addresses the vulnerability by modifying how the Code Integrity Module performs hashing. (CVE-2018-1040) - A security feature bypass vulnerability exists in Internet Explorer that allows for bypassing Mark of the Web Tagging (MOTW). Failing to set the MOTW means that a large number of Microsoft security technologies are bypassed. (CVE-2018-8113) - A remote code execution vulnerability exists when Windows improperly handles objects in memory. An attacker who successfully exploited these vulnerabilities could take control of an affected system. (CVE-2018-8210, CVE-2018-8213) - An elevation of privilege vulnerability exists in the way that the Windows Kernel API enforces permissions. An attacker who successfully exploited the vulnerability could impersonate processes, interject cross-process communication, or interrupt system functionality. (CVE-2018-0982) - An elevation of privilege vulnerability exists in Windows when Desktop Bridge does not properly manage the virtual registry. An attacker who successfully exploited this vulnerability could run arbitrary code in kernel mode. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. (CVE-2018-8208, CVE-2018-8214) |
last seen | 2020-06-01 |
modified | 2020-06-02 |
plugin id | 110485 |
published | 2018-06-12 |
reporter | This script is Copyright (C) 2018-2019 and is owned by Tenable, Inc. or an Affiliate thereof. |
source | https://www.tenable.com/plugins/nessus/110485 |
title | KB4284819: Windows 10 Version 1709 and Windows Server Version 1709 June 2018 Security Update |
code |
|