Vulnerabilities > CVE-2017-8714 - Improper Input Validation vulnerability in Microsoft products
Attack vector
LOCAL Attack complexity
HIGH Privileges required
LOW Confidentiality impact
HIGH Integrity impact
HIGH Availability impact
HIGH Summary
The Windows Hyper-V component on Microsoft Windows 8.1, Windows Server 2012 Gold and R2,, Windows 10 1607, and Windows Server 2016 allows a remote code execution vulnerability when it fails to properly validate input from an authenticated user on a guest operating system, aka "Remote Desktop Virtual Host Remote Code Execution Vulnerability".
Vulnerable Configurations
Part | Description | Count |
---|---|---|
OS | 5 |
Common Weakness Enumeration (CWE)
Common Attack Pattern Enumeration and Classification (CAPEC)
- Buffer Overflow via Environment Variables This attack pattern involves causing a buffer overflow through manipulation of environment variables. Once the attacker finds that they can modify an environment variable, they may try to overflow associated buffers. This attack leverages implicit trust often placed in environment variables.
- Server Side Include (SSI) Injection An attacker can use Server Side Include (SSI) Injection to send code to a web application that then gets executed by the web server. Doing so enables the attacker to achieve similar results to Cross Site Scripting, viz., arbitrary code execution and information disclosure, albeit on a more limited scale, since the SSI directives are nowhere near as powerful as a full-fledged scripting language. Nonetheless, the attacker can conveniently gain access to sensitive files, such as password files, and execute shell commands.
- Cross Zone Scripting An attacker is able to cause a victim to load content into their web-browser that bypasses security zone controls and gain access to increased privileges to execute scripting code or other web objects such as unsigned ActiveX controls or applets. This is a privilege elevation attack targeted at zone-based web-browser security. In a zone-based model, pages belong to one of a set of zones corresponding to the level of privilege assigned to that page. Pages in an untrusted zone would have a lesser level of access to the system and/or be restricted in the types of executable content it was allowed to invoke. In a cross-zone scripting attack, a page that should be assigned to a less privileged zone is granted the privileges of a more trusted zone. This can be accomplished by exploiting bugs in the browser, exploiting incorrect configuration in the zone controls, through a cross-site scripting attack that causes the attackers' content to be treated as coming from a more trusted page, or by leveraging some piece of system functionality that is accessible from both the trusted and less trusted zone. This attack differs from "Restful Privilege Escalation" in that the latter correlates to the inadequate securing of RESTful access methods (such as HTTP DELETE) on the server, while cross-zone scripting attacks the concept of security zones as implemented by a browser.
- Cross Site Scripting through Log Files An attacker may leverage a system weakness where logs are susceptible to log injection to insert scripts into the system's logs. If these logs are later viewed by an administrator through a thin administrative interface and the log data is not properly HTML encoded before being written to the page, the attackers' scripts stored in the log will be executed in the administrative interface with potentially serious consequences. This attack pattern is really a combination of two other attack patterns: log injection and stored cross site scripting.
- Command Line Execution through SQL Injection An attacker uses standard SQL injection methods to inject data into the command line for execution. This could be done directly through misuse of directives such as MSSQL_xp_cmdshell or indirectly through injection of data into the database that would be interpreted as shell commands. Sometime later, an unscrupulous backend application (or could be part of the functionality of the same application) fetches the injected data stored in the database and uses this data as command line arguments without performing proper validation. The malicious data escapes that data plane by spawning new commands to be executed on the host.
Nessus
NASL family Amazon Linux Local Security Checks NASL id ALA_ALAS-2017-819.NASL description An exploitable buffer overflow vulnerability exists in the LoadEncoding functionality of the R programming language version 3.3.0. A specially crafted R script can cause a buffer overflow resulting in a memory corruption. An attacker can send a malicious R script to trigger this vulnerability. (CVE-2017-8714) last seen 2020-06-01 modified 2020-06-02 plugin id 99532 published 2017-04-21 reporter This script is Copyright (C) 2017-2018 Tenable Network Security, Inc. source https://www.tenable.com/plugins/nessus/99532 title Amazon Linux AMI : R (ALAS-2017-819) NASL family Windows : Microsoft Bulletins NASL id SMB_NT_MS17_SEP_4038792.NASL description The remote Windows host is missing security update 4038793 or cumulative update 4038792. It is, therefore, affected by multiple vulnerabilities : - A race condition that could lead to a remote code execution vulnerability exists in NetBT Session Services when NetBT fails to maintain certain sequencing requirements. (CVE-2017-0161) - A spoofing vulnerability exists in Microsoft last seen 2020-05-31 modified 2017-09-12 plugin id 103131 published 2017-09-12 reporter This script is Copyright (C) 2017-2020 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/103131 title Windows 8.1 and Windows Server 2012 R2 September 2017 Security Updates NASL family Windows : Microsoft Bulletins NASL id SMB_NT_MS17_SEP_4038799.NASL description The remote Windows host is missing security update 4038786 or cumulative update 4038799. It is, therefore, affected by multiple vulnerabilities : - A race condition that could lead to a remote code execution vulnerability exists in NetBT Session Services when NetBT fails to maintain certain sequencing requirements. (CVE-2017-0161) - An elevation of privilege vulnerability exists in Windows when the Windows kernel-mode driver fails to properly handle objects in memory. An attacker who successfully exploited this vulnerability could run arbitrary code in kernel mode. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. (CVE-2017-8675) - An information disclosure vulnerability exists in the way that the Windows Graphics Device Interface (GDI) handles objects in memory, allowing an attacker to retrieve information from a targeted system. By itself, the information disclosure does not allow arbitrary code execution; however, it could allow arbitrary code to be run if the attacker uses it in combination with another vulnerability. (CVE-2017-8676) - A remote code execution vulnerability exists when the Windows font library improperly handles specially crafted embedded fonts. An attacker who successfully exploited this vulnerability could take control of the affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. (CVE-2017-8682) - An information disclosure vulnerability exists when the Microsoft Windows Graphics Component improperly handles objects in memory. An attacker who successfully exploited the vulnerability could obtain information to further compromise the users system. (CVE-2017-8683) - A information disclosure vulnerability exists when the Windows GDI+ component improperly discloses kernel memory addresses. An attacker who successfully exploited the vulnerability could obtain information to further compromise the users system. (CVE-2017-8677, CVE-2017-8680, CVE-2017-8681, CVE-2017-8684) - A memory corruption vulnerability exists in the Windows Server DHCP service when an attacker sends specially crafted packets to a DHCP failover server. An attacker who successfully exploited the vulnerability could either run arbitrary code on the DHCP failover server or cause the DHCP service to become nonresponsive. To exploit the vulnerability, an attacker could send a specially crafted packet to a DHCP server. However, the DHCP server must be set to failover mode for the attack to succeed. The security update addresses the vulnerability by correcting how DHCP failover servers handle network packets. (CVE-2017-8686) - An Information disclosure vulnerability exists in Windows kernel that could allow an attacker to retrieve information that could lead to a Kernel Address Space Layout Randomization (KASLR) bypass. An attacker who successfully exploited this vulnerability could retrieve the memory address of a kernel object. (CVE-2017-8687) - An information disclosure vulnerability exists in the way that the Windows Graphics Device Interface+ (GDI+) handles objects in memory, allowing an attacker to retrieve information from a targeted system. By itself, the information disclosure does not allow arbitrary code execution; however, it could allow arbitrary code to be run if the attacker uses it in combination with another vulnerability. (CVE-2017-8688) - A remote code execution vulnerability exists due to the way Windows Uniscribe handles objects in memory. An attacker who successfully exploited this vulnerability could take control of the affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. (CVE-2017-8692) - An information disclosure vulnerability exists when Windows Uniscribe improperly discloses the contents of its memory. An attacker who successfully exploited the vulnerability could obtain information to further compromise the users system. There are multiple ways an attacker could exploit the vulnerability, such as by convincing a user to open a specially crafted document or by convincing a user to visit an untrusted webpage. The update addresses the vulnerability by correcting how Windows Uniscribe handles objects in memory. (CVE-2017-8695) - A remote code execution vulnerability exists when Windows Shell does not properly validate file copy destinations. An attacker who successfully exploited the vulnerability could run arbitrary code in the context of the current user. (CVE-2017-8699) - An information disclosure vulnerability exists when the Windows kernel fails to properly initialize a memory address, allowing an attacker to retrieve information that could lead to a Kernel Address Space Layout Randomization (KASLR) bypass. An attacker who successfully exploited this vulnerability could retrieve the base address of the kernel driver from a compromised process. (CVE-2017-8708) - An information disclosure vulnerability exists when Windows Hyper-V on a host operating system fails to properly validate input from an authenticated user on a guest operating system. (CVE-2017-8713) - A remote code execution vulnerability exists in the VM Host Agent Service of Remote Desktop Virtual Host role when it fails to properly validate input from an authenticated user on a guest operating system. To exploit the vulnerability, an attacker could issue a specially crafted certificate on the guest operating system that could cause the VM host agent service on the host operating system to execute arbitrary code. The Remote Desktop Virtual Host role is not enabled by default. An attacker who successfully exploited the vulnerability could execute arbitrary code on the host operating system. The security update addresses the vulnerability by correcting how VM host agent service validates guest operating system user input. (CVE-2017-8714) - An information disclosure vulnerability exists when the Windows kernel improperly handles objects in memory. An attacker who successfully exploited this vulnerability could obtain information to further compromise the users system. (CVE-2017-8678, CVE-2017-8679, CVE-2017-8709, CVE-2017-8719) - An elevation of privilege vulnerability exists in Windows when the Win32k component fails to properly handle objects in memory. An attacker who successfully exploited this vulnerability could run arbitrary code in kernel mode. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. (CVE-2017-8720) - A spoofing vulnerability exists when Internet Explorer improperly handles specific HTML content. An attacker who successfully exploited this vulnerability could trick a user into believing that the user was visiting a legitimate website. The specially crafted website could either spoof content or serve as a pivot to chain an attack with other vulnerabilities in web services. To exploit the vulnerability, the user must either browse to a malicious website or be redirected to it. In an email attack scenario, an attacker could send an email message in an attempt to convince the user to click a link to the malicious website. (CVE-2017-8733) - A remote code execution vulnerability exists when Microsoft Windows PDF Library improperly handles objects in memory. The vulnerability could corrupt memory in a way that enables an attacker to execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. (CVE-2017-8728, CVE-2017-8737) - A remote code execution vulnerability exists in the way that Microsoft browser JavaScript engines render content when handling objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. (CVE-2017-8741) - A remote code execution vulnerability exists when Internet Explorer improperly accesses objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. (CVE-2017-8747) - A remote code execution vulnerability exists when Internet Explorer improperly accesses objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. (CVE-2017-8747, CVE-2017-8749) - A remote code execution vulnerability exists when Microsoft .NET Framework processes untrusted input. An attacker who successfully exploited this vulnerability in software using the .NET framework could take control of an affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. (CVE-2017-8759) - An information disclosure vulnerability exists in Microsoft browsers in the scripting engines due to improper handling of objects in memory. An unauthenticated, remote attacker can exploit this, by convincing a user to visit a specially crafted website, to disclose files on a user last seen 2020-05-31 modified 2017-09-12 plugin id 103132 published 2017-09-12 reporter This script is Copyright (C) 2017-2020 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/103132 title Windows Server 2012 September 2017 Security Updates NASL family Windows : Microsoft Bulletins NASL id SMB_NT_MS17_SEP_4038782.NASL description The remote Windows host is missing security update 4038782. It is, therefore, affected by multiple vulnerabilities : - A race condition that could lead to a remote code execution vulnerability exists in NetBT Session Services when NetBT fails to maintain certain sequencing requirements. (CVE-2017-0161) - A vulnerability exists when Microsoft Edge improperly accesses objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. (CVE-2017-11766) - A spoofing vulnerability exists in Microsoft last seen 2020-05-31 modified 2017-09-12 plugin id 103128 published 2017-09-12 reporter This script is Copyright (C) 2017-2020 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/103128 title KB4038782: Windows 10 Version 1607 and Windows Server 2016 September 2017 Cumulative Update