Vulnerabilities > CVE-2017-8628 - Unspecified vulnerability in Microsoft products

047910
CVSS 4.3 - MEDIUM
Attack vector
ADJACENT_NETWORK
Attack complexity
MEDIUM
Privileges required
NONE
Confidentiality impact
PARTIAL
Integrity impact
PARTIAL
Availability impact
NONE
microsoft
nessus

Summary

Microsoft Bluetooth Driver in Windows Server 2008 SP2, Windows 7 SP1, Windows 8.1, Windows RT 8.1, Windows 10 Gold, 1511, 1607, 1703 allows a spoofing vulnerability due to Microsoft's implementation of the Bluetooth stack, aka "Microsoft Bluetooth Driver Spoofing Vulnerability".

Nessus

  • NASL familyWindows : Microsoft Bulletins
    NASL idSMB_NT_MS17_SEP_4038777.NASL
    descriptionThe remote Windows host is missing security update 4038779 or cumulative update 4038777. It is, therefore, affected by multiple vulnerabilities : - A race condition that could lead to a remote code execution vulnerability exists in NetBT Session Services when NetBT fails to maintain certain sequencing requirements. (CVE-2017-0161) - A spoofing vulnerability exists in Microsoft
    last seen2020-05-31
    modified2017-09-12
    plugin id103127
    published2017-09-12
    reporterThis script is Copyright (C) 2017-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/103127
    titleWindows 7 and Windows Server 2008 R2 September 2017 Security Updates
    code
    #
    # (C) Tenable Network Security, Inc.
    #
    # The descriptive text and package checks in this plugin were
    # extracted from the Microsoft Security Updates API. The text
    # itself is copyright (C) Microsoft Corporation.
    #
    include("compat.inc");
    
    if (description)
    {
      script_id(103127);
      script_version("1.22");
      script_set_attribute(attribute:"plugin_modification_date", value:"2020/05/28");
    
      script_cve_id(
        "CVE-2017-0161",
        "CVE-2017-8529",
        "CVE-2017-8628",
        "CVE-2017-8675",
        "CVE-2017-8676",
        "CVE-2017-8677",
        "CVE-2017-8678",
        "CVE-2017-8679",
        "CVE-2017-8680",
        "CVE-2017-8681",
        "CVE-2017-8682",
        "CVE-2017-8683",
        "CVE-2017-8684",
        "CVE-2017-8685",
        "CVE-2017-8687",
        "CVE-2017-8688",
        "CVE-2017-8695",
        "CVE-2017-8696",
        "CVE-2017-8699",
        "CVE-2017-8707",
        "CVE-2017-8708",
        "CVE-2017-8709",
        "CVE-2017-8710",
        "CVE-2017-8719",
        "CVE-2017-8720",
        "CVE-2017-8733",
        "CVE-2017-8736",
        "CVE-2017-8741",
        "CVE-2017-8747",
        "CVE-2017-8748",
        "CVE-2017-8749",
        "CVE-2017-8750"
      );
      script_bugtraq_id(
        98953,
        100720,
        100722,
        100724,
        100727,
        100728,
        100736,
        100737,
        100742,
        100743,
        100744,
        100752,
        100755,
        100756,
        100764,
        100765,
        100766,
        100767,
        100769,
        100770,
        100771,
        100772,
        100773,
        100780,
        100781,
        100782,
        100783,
        100790,
        100791,
        100792,
        100793,
        100803,
        100804
      );
    
      script_xref(name:"MSKB", value:"4038779");
      script_xref(name:"MSFT", value:"MS17-4038779");
      script_xref(name:"MSKB", value:"4038777");
      script_xref(name:"MSFT", value:"MS17-4038777");
    
      script_name(english:"Windows 7 and Windows Server 2008 R2 September 2017 Security Updates");
      script_summary(english:"Checks for rollup.");
    
      script_set_attribute(attribute:"synopsis", value:
    "The remote Windows host is affected by multiple vulnerabilities.");
      script_set_attribute(attribute:"description", value:
    "The remote Windows host is missing security update 4038779
    or cumulative update 4038777. It is, therefore, affected by
    multiple vulnerabilities :
    
      - A race condition that could lead to a remote code
        execution vulnerability exists in NetBT Session Services
        when NetBT fails to maintain certain sequencing
        requirements. (CVE-2017-0161)
    
      - A spoofing vulnerability exists in Microsoft's
        implementation of the Bluetooth stack. An attacker who
        successfully exploited this vulnerability could perform
        a man-in-the-middle attack and force a user's computer
        to unknowingly route traffic through the attacker's
        computer. The attacker can then monitor and read the
        traffic before sending it on to the intended recipient.
        (CVE-2017-8628)
    
      - An elevation of privilege vulnerability exists in
        Windows when the Windows kernel-mode driver fails to
        properly handle objects in memory. An attacker who
        successfully exploited this vulnerability could run
        arbitrary code in kernel mode. An attacker could then
        install programs; view, change, or delete data; or
        create new accounts with full user rights. To exploit
        this vulnerability, an attacker would first have to log
        on to the system. An attacker could then run a specially
        crafted application that could exploit the vulnerability
        and take control of an affected system. The update
        addresses this vulnerability by correcting how the
        Windows kernel-mode driver handles objects in memory.
        (CVE-2017-8675)
    
      - An information disclosure vulnerability exists in the
        way that the Windows Graphics Device Interface (GDI)
        handles objects in memory, allowing an attacker to
        retrieve information from a targeted system. By itself,
        the information disclosure does not allow arbitrary code
        execution; however, it could allow arbitrary code to be
        run if the attacker uses it in combination with another
        vulnerability. (CVE-2017-8676)
    
      - A remote code execution vulnerability exists when the
        Windows font library improperly handles specially
        crafted embedded fonts. An attacker who successfully
        exploited this vulnerability could take control of the
        affected system. An attacker could then install
        programs; view, change, or delete data; or create new
        accounts with full user rights. (CVE-2017-8682)
    
      - An information disclosure vulnerability exists when the
        Microsoft Windows Graphics Component improperly handles
        objects in memory. An attacker who successfully
        exploited the vulnerability could obtain information to
        further compromise the users system. (CVE-2017-8683)
    
      - A information disclosure vulnerability exists when the
        Windows GDI+ component improperly discloses kernel
        memory addresses. An attacker who successfully exploited
        the vulnerability could obtain information to further
        compromise the users system.
        (CVE-2017-8677, CVE-2017-8680, CVE-2017-8681,
        CVE-2017-8684, CVE-2017-8685)
    
      - An Information disclosure vulnerability exists in
        Windows kernel that could allow an attacker to retrieve
        information that could lead to a Kernel Address Space
        Layout Randomization (KASLR) bypass. An attacker who
        successfully exploited this vulnerability could retrieve
        the memory address of a kernel object. (CVE-2017-8687)
    
      - An information disclosure vulnerability exists in the
        way that the Windows Graphics Device Interface+ (GDI+)
        handles objects in memory, allowing an attacker to
        retrieve information from a targeted system. By itself,
        the information disclosure does not allow arbitrary code
        execution; however, it could allow arbitrary code to be
        run if the attacker uses it in combination with another
        vulnerability. (CVE-2017-8688)
    
      - An information disclosure vulnerability exists when
        Windows Uniscribe improperly discloses the contents of
        its memory. An attacker who successfully exploited the
        vulnerability could obtain information to further
        compromise the users system. There are multiple ways an
        attacker could exploit the vulnerability, such as by
        convincing a user to open a specially crafted document
        or by convincing a user to visit an untrusted webpage.
        The update addresses the vulnerability by correcting how
        Windows Uniscribe handles objects in memory.
        (CVE-2017-8695)
    
      - A remote code execution vulnerability exists due to the
        way Windows Uniscribe handles objects in memory. An
        attacker who successfully exploited this vulnerability
        could take control of the affected system. An attacker
        could then install programs; view, change, or delete
        data; or create new accounts with full user rights.
        (CVE-2017-8696)
    
      - A remote code execution vulnerability exists when
        Windows Shell does not properly validate file copy
        destinations. An attacker who successfully exploited the
        vulnerability could run arbitrary code in the context of
        the current user.
        (CVE-2017-8699)
    
      - An information disclosure vulnerability exists when
        Windows Hyper-V on a host operating system fails to
        properly validate input from an authenticated user on a
        guest operating system. (CVE-2017-8707)
    
      - An information disclosure vulnerability exists when the
        Windows kernel fails to properly initialize a memory
        address, allowing an attacker to retrieve information
        that could lead to a Kernel Address Space Layout
        Randomization (KASLR) bypass. An attacker who
        successfully exploited this vulnerability could retrieve
        the base address of the kernel driver from a compromised
        process. (CVE-2017-8708)
    
      - An information disclosure vulnerability exists in the
        Windows System Information Console when it improperly
        parses XML input containing a reference to an external
        entity. An attacker who successfully exploited this
        vulnerability could read arbitrary files via an XML
        external entity (XXE) declaration. To exploit the
        vulnerability, an attacker could create a file
        containing specially crafted XML content and convince an
        authenticated user to open the file. The update
        addresses the vulnerability by modifying the way that
        the Windows System Information Console parses XML input.
        (CVE-2017-8710)
    
      - An information disclosure vulnerability exists when the
        Windows kernel improperly handles objects in memory. An
        attacker who successfully exploited this vulnerability
        could obtain information to further compromise the users
        system. (CVE-2017-8678, CVE-2017-8679, CVE-2017-8709,
        CVE-2017-8719)
    
      - An elevation of privilege vulnerability exists in
        Windows when the Win32k component fails to properly
        handle objects in memory. An attacker who successfully
        exploited this vulnerability could run arbitrary code in
        kernel mode. An attacker could then install programs;
        view, change, or delete data; or create new accounts
        with full user rights. (CVE-2017-8720)
    
      - A spoofing vulnerability exists when Internet Explorer
        improperly handles specific HTML content. An attacker
        who successfully exploited this vulnerability could
        trick a user into believing that the user was visiting a
        legitimate website. The specially crafted website could
        either spoof content or serve as a pivot to chain an
        attack with other vulnerabilities in web services. To
        exploit the vulnerability, the user must either browse
        to a malicious website or be redirected to it. In an
        email attack scenario, an attacker could send an email
        message in an attempt to convince the user to click a
        link to the malicious website. (CVE-2017-8733)
    
      - An information disclosure vulnerability exists in
        Microsoft browsers due to improper parent domain
        verification in certain functionality. An attacker who
        successfully exploited the vulnerability could obtain
        specific information that is used in the parent domain.
        (CVE-2017-8736)
    
      - A remote code execution vulnerability exists in the way
        that Microsoft browser JavaScript engines render content
        when handling objects in memory. The vulnerability could
        corrupt memory in such a way that an attacker could
        execute arbitrary code in the context of the current
        user. (CVE-2017-8741, CVE-2017-8748)
    
      - A remote code execution vulnerability exists when
        Internet Explorer improperly accesses objects in memory.
        The vulnerability could corrupt memory in such a way
        that an attacker could execute arbitrary code in the
        context of the current user. (CVE-2017-8747,
        CVE-2017-8749)
    
      - A remote code execution vulnerability exists when
        Microsoft browsers improperly access objects in memory.
        The vulnerability could corrupt memory in such a way
        that an attacker could execute arbitrary code in the
        context of the current user. (CVE-2017-8750)
    
      - A remote code execution vulnerability exists when
        Microsoft .NET Framework processes untrusted input. An
        attacker who successfully exploited this vulnerability
        in software using the .NET framework could take control
        of an affected system. An attacker could then install
        programs; view, change, or delete data; or create new
        accounts with full user rights. (CVE-2017-8759)
    
      - An information disclosure vulnerability exists in
        Microsoft browsers in the scripting engines due to
        improper handling of objects in memory. An
        unauthenticated, remote attacker can exploit this, by
        convincing a user to visit a specially crafted website,
        to disclose files on a user's computer. (CVE-2017-8529)");
      # https://support.microsoft.com/en-us/help/4038779/windows-7-update-kb4038779
      script_set_attribute(attribute:"see_also", value:"http://www.nessus.org/u?bf7e8b94");
      # https://support.microsoft.com/en-us/help/4038777/windows-7-update-kb4038777
      script_set_attribute(attribute:"see_also", value:"http://www.nessus.org/u?1dbb18cc");
      script_set_attribute(attribute:"solution", value:
    "Apply Security Only update KB4038779 or Cumulative update KB4038777
    as well as refer to the KB article for additional information.");
      script_set_cvss_base_vector("CVSS2#AV:N/AC:M/Au:N/C:C/I:C/A:C");
      script_set_cvss_temporal_vector("CVSS2#E:H/RL:OF/RC:C");
      script_set_cvss3_base_vector("CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H");
      script_set_cvss3_temporal_vector("CVSS:3.0/E:H/RL:O/RC:C");
      script_set_attribute(attribute:"cvss_score_source", value:"CVE-2017-8682");
      script_set_attribute(attribute:"exploitability_ease", value:"Exploits are available");
      script_set_attribute(attribute:"exploit_available", value:"true");
      script_set_attribute(attribute:"exploited_by_malware", value:"true");
    
      script_set_attribute(attribute:"vuln_publication_date", value:"2017/09/12");
      script_set_attribute(attribute:"patch_publication_date", value:"2017/09/12");
      script_set_attribute(attribute:"plugin_publication_date", value:"2017/09/12");
    
      script_set_attribute(attribute:"plugin_type", value:"local");
      script_set_attribute(attribute:"cpe", value:"cpe:/o:microsoft:windows");
      script_end_attributes();
    
      script_category(ACT_GATHER_INFO);
      script_family(english:"Windows : Microsoft Bulletins");
    
      script_copyright(english:"This script is Copyright (C) 2017-2020 and is owned by Tenable, Inc. or an Affiliate thereof.");
    
      script_dependencies("smb_check_rollup.nasl", "smb_hotfixes.nasl", "ms_bulletin_checks_possible.nasl");
      script_require_keys("SMB/MS_Bulletin_Checks/Possible");
      script_require_ports(139, 445, "Host/patch_management_checks");
    
      exit(0);
    }
    
    include("global_settings.inc");
    include("audit.inc");
    include("smb_hotfixes_fcheck.inc");
    include("smb_hotfixes.inc");
    include("smb_func.inc");
    include("smb_reg_query.inc");
    include("misc_func.inc");
    
    get_kb_item_or_exit("SMB/MS_Bulletin_Checks/Possible");
    
    bulletin = "MS17-09";
    kbs = make_list('4038779', '4038777');
    
    if (get_kb_item("Host/patch_management_checks"))
      hotfix_check_3rd_party(bulletin:bulletin, kbs:kbs, severity:SECURITY_HOLE);
    
    get_kb_item_or_exit("SMB/Registry/Enumerated");
    get_kb_item_or_exit("SMB/WindowsVersion", exit_code:1);
    
    if (hotfix_check_sp_range(win7:'1') <= 0) audit(AUDIT_OS_SP_NOT_VULN);
    
    share = hotfix_get_systemdrive(as_share:TRUE, exit_on_fail:TRUE);
    if (!is_accessible_share(share:share)) audit(AUDIT_SHARE_FAIL, share);
    
    if (
      smb_check_rollup(
        os:"6.1",
        sp:1,
        rollup_date:"09_2017",
        bulletin:bulletin,
        rollup_kb_list:[4038779, 4038777]
      )
    )
    {
      replace_kb_item(name:'SMB/Missing/'+bulletin, value:TRUE);
      hotfix_security_hole();
      hotfix_check_fversion_end();
      exit(0);
    }
    else
    {
      hotfix_check_fversion_end();
      audit(AUDIT_HOST_NOT, hotfix_get_audit_report());
    }
    
  • NASL familyWindows : Microsoft Bulletins
    NASL idSMB_NT_MS17_SEP_4038781.NASL
    descriptionThe remote Windows host is missing security update 4038781. It is, therefore, affected by multiple vulnerabilities : - A remote code execution vulnerability exists when Microsoft Windows PDF Library improperly handles objects in memory. The vulnerability could corrupt memory in a way that enables an attacker to execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. If the current user is logged on with administrative user rights, an attacker could take control of an affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. (CVE-2017-8728, CVE-2017-8737) - An information disclosure vulnerability exists when Windows Hyper-V on a host operating system fails to properly validate input from an authenticated user on a guest operating system. (CVE-2017-8706, CVE-2017-8707, CVE-2017-8713) - An information disclosure vulnerability exists when the Microsoft Windows Graphics Component improperly handles objects in memory. An attacker who successfully exploited the vulnerability could obtain information to further compromise the users system. (CVE-2017-8683) - An Information disclosure vulnerability exists in Windows kernel that could allow an attacker to retrieve information that could lead to a Kernel Address Space Layout Randomization (KASLR) bypass. An attacker who successfully exploited this vulnerability could retrieve the memory address of a kernel object. (CVE-2017-8687) - A remote code execution vulnerability exists when Microsoft Edge improperly accesses objects in memory. The vulnerability could corrupt memory in such a way that enables an attacker to execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. (CVE-2017-8734) - An information disclosure vulnerability exists in the way that the Windows Graphics Device Interface (GDI) handles objects in memory, allowing an attacker to retrieve information from a targeted system. By itself, the information disclosure does not allow arbitrary code execution; however, it could allow arbitrary code to be run if the attacker uses it in combination with another vulnerability. (CVE-2017-8676) - A remote code execution vulnerability exists in the way that Microsoft browser JavaScript engines render content when handling objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. In a web-based attack scenario, an attacker could host a specially crafted website that is designed to exploit the vulnerability through Microsoft browsers and then convince a user to view the website. An attacker could also embed an ActiveX control marked &quot;safe for initialization&quot; in an application or Microsoft Office document that hosts the related rendering engine. The attacker could also take advantage of compromised websites, and websites that accept or host user-provided content or advertisements. These websites could contain specially crafted content that could exploit the vulnerability. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. (CVE-2017-8741, CVE-2017-8748) - A remote code execution vulnerability exists in the way that the scripting engine handles objects in memory in Microsoft Edge. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. (CVE-2017-8738, CVE-2017-8753, CVE-2017-8756) - A race condition that could lead to a remote code execution vulnerability exists in NetBT Session Services when NetBT fails to maintain certain sequencing requirements. (CVE-2017-0161) - A remote code execution vulnerability exists in the way Microsoft Edge handles objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. (CVE-2017-8757) - A remote code execution vulnerability exists when Internet Explorer improperly accesses objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. (CVE-2017-8747, CVE-2017-8749) - An elevation of privilege vulnerability exists in Windows when the Win32k component fails to properly handle objects in memory. An attacker who successfully exploited this vulnerability could run arbitrary code in kernel mode. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. (CVE-2017-8720) - An information disclosure vulnerability exists when Windows Uniscribe improperly discloses the contents of its memory. An attacker who successfully exploited the vulnerability could obtain information to further compromise the users system. There are multiple ways an attacker could exploit the vulnerability, such as by convincing a user to open a specially crafted document or by convincing a user to visit an untrusted webpage. The update addresses the vulnerability by correcting how Windows Uniscribe handles objects in memory. (CVE-2017-8695) - An information disclosure vulnerability exists when Microsoft Edge improperly handles clipboard events. For an attack to be successful, an attacker must persuade a user to visit a malicious website and leave it open during clipboard activities. The update addresses the vulnerability by changing how Microsoft Edge handles clipboard events in the browser. (CVE-2017-8643) - A spoofing vulnerability exists in Microsoft
    last seen2020-05-31
    modified2017-11-03
    plugin id104385
    published2017-11-03
    reporterThis script is Copyright (C) 2017-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/104385
    titleKB4038781: Windows 10 September 2017 Cumulative Update
    code
    #
    # (C) Tenable Network Security, Inc.
    #
    # The descriptive text and package checks in this plugin were  
    # extracted from the Microsoft Security Updates API. The text
    # itself is copyright (C) Microsoft Corporation.
    #
    include("compat.inc");
    
    if (description)
    {
      script_id(104385);
      script_version("1.7");
      script_set_attribute(attribute:"plugin_modification_date", value:"2020/05/28");
    
      script_cve_id(
        "CVE-2017-0161",
        "CVE-2017-8529",
        "CVE-2017-8628",
        "CVE-2017-8643",
        "CVE-2017-8675",
        "CVE-2017-8676",
        "CVE-2017-8677",
        "CVE-2017-8678",
        "CVE-2017-8679",
        "CVE-2017-8681",
        "CVE-2017-8682",
        "CVE-2017-8683",
        "CVE-2017-8687",
        "CVE-2017-8688",
        "CVE-2017-8692",
        "CVE-2017-8695",
        "CVE-2017-8699",
        "CVE-2017-8702",
        "CVE-2017-8706",
        "CVE-2017-8707",
        "CVE-2017-8708",
        "CVE-2017-8709",
        "CVE-2017-8713",
        "CVE-2017-8719",
        "CVE-2017-8720",
        "CVE-2017-8723",
        "CVE-2017-8728",
        "CVE-2017-8733",
        "CVE-2017-8734",
        "CVE-2017-8735",
        "CVE-2017-8736",
        "CVE-2017-8737",
        "CVE-2017-8738",
        "CVE-2017-8741",
        "CVE-2017-8747",
        "CVE-2017-8748",
        "CVE-2017-8749",
        "CVE-2017-8750",
        "CVE-2017-8753",
        "CVE-2017-8754",
        "CVE-2017-8756",
        "CVE-2017-8757",
        "CVE-2017-8759",
        "CVE-2017-11766"
      );
      script_bugtraq_id(
        98953,
        100718,
        100720,
        100721,
        100727,
        100728,
        100729,
        100736,
        100737,
        100738,
        100739,
        100740,
        100742,
        100743,
        100744,
        100747,
        100749,
        100752,
        100755,
        100756,
        100759,
        100762,
        100764,
        100765,
        100766,
        100767,
        100768,
        100769,
        100770,
        100771,
        100772,
        100773,
        100776,
        100779,
        100781,
        100783,
        100785,
        100789,
        100790,
        100791,
        100792,
        100796,
        100803,
        100804
      );
      script_xref(name:"MSKB", value:"4038781");
      script_xref(name:"MSFT", value:"MS17-4038781");
    
      script_name(english:"KB4038781: Windows 10 September 2017 Cumulative Update");
      script_summary(english:"Checks for rollup.");
    
      script_set_attribute(attribute:"synopsis", value:
    "The remote Windows host is affected by multiple vulnerabilities.");
      script_set_attribute(attribute:"description", value:
    "The remote Windows host is missing security update 4038781.
    It is, therefore, affected by multiple vulnerabilities :
    
      - A remote code execution vulnerability exists when
        Microsoft Windows PDF Library improperly handles objects
        in memory. The vulnerability could corrupt memory in a
        way that enables an attacker to execute arbitrary code
        in the context of the current user. An attacker who
        successfully exploited the vulnerability could gain the
        same user rights as the current user. If the current
        user is logged on with administrative user rights, an
        attacker could take control of an affected system. An
        attacker could then install programs; view, change, or
        delete data; or create new accounts with full user
        rights.  (CVE-2017-8728, CVE-2017-8737)
    
      - An information disclosure vulnerability exists when
        Windows Hyper-V on a host operating system fails to
        properly validate input from an authenticated user on a
        guest operating system.  (CVE-2017-8706, CVE-2017-8707,
        CVE-2017-8713)
    
      - An information disclosure vulnerability exists when the
        Microsoft Windows Graphics Component improperly handles
        objects in memory. An attacker who successfully
        exploited the vulnerability could obtain information to
        further compromise the users system.  (CVE-2017-8683)
    
      - An Information disclosure vulnerability exists in
        Windows kernel that could allow an attacker to retrieve
        information that could lead to a Kernel Address Space
        Layout Randomization (KASLR) bypass. An attacker who
        successfully exploited this vulnerability could retrieve
        the memory address of a kernel object.  (CVE-2017-8687)
    
      - A remote code execution vulnerability exists when
        Microsoft Edge improperly accesses objects in memory.
        The vulnerability could corrupt memory in such a way
        that enables an attacker to execute arbitrary code in
        the context of the current user. An attacker who
        successfully exploited the vulnerability could gain the
        same user rights as the current user.  (CVE-2017-8734)
    
      - An information disclosure vulnerability exists in the
        way that the Windows Graphics Device Interface (GDI)
        handles objects in memory, allowing an attacker to
        retrieve information from a targeted system. By itself,
        the information disclosure does not allow arbitrary code
        execution; however, it could allow arbitrary code to be
        run if the attacker uses it in combination with another
        vulnerability.  (CVE-2017-8676)
    
      - A remote code execution vulnerability exists in the way
        that Microsoft browser JavaScript engines render content
        when handling objects in memory. The vulnerability could
        corrupt memory in such a way that an attacker could
        execute arbitrary code in the context of the current
        user. In a web-based attack scenario, an attacker could
        host a specially crafted website that is designed to
        exploit the vulnerability through Microsoft browsers and
        then convince a user to view the website. An attacker
        could also embed an ActiveX control marked &quot;safe
        for initialization&quot; in an application or Microsoft
        Office document that hosts the related rendering engine.
        The attacker could also take advantage of compromised
        websites, and websites that accept or host user-provided
        content or advertisements. These websites could contain
        specially crafted content that could exploit the
        vulnerability. An attacker who successfully exploited
        the vulnerability could gain the same user rights as the
        current user.  (CVE-2017-8741, CVE-2017-8748)
    
      - A remote code execution vulnerability exists in the way
        that the scripting engine handles objects in memory in
        Microsoft Edge. The vulnerability could corrupt memory
        in such a way that an attacker could execute arbitrary
        code in the context of the current user. An attacker who
        successfully exploited the vulnerability could gain the
        same user rights as the current user.  (CVE-2017-8738,
        CVE-2017-8753, CVE-2017-8756)
    
      - A race condition that could lead to a remote code
        execution vulnerability exists in NetBT Session Services
        when NetBT fails to maintain certain sequencing
        requirements.  (CVE-2017-0161)
    
      - A remote code execution vulnerability exists in the way
        Microsoft Edge handles objects in memory. The
        vulnerability could corrupt memory in such a way that an
        attacker could execute arbitrary code in the context of
        the current user. An attacker who successfully exploited
        the vulnerability could gain the same user rights as the
        current user.  (CVE-2017-8757)
    
      - A remote code execution vulnerability exists when
        Internet Explorer improperly accesses objects in memory.
        The vulnerability could corrupt memory in such a way
        that an attacker could execute arbitrary code in the
        context of the current user.  (CVE-2017-8747,
        CVE-2017-8749)
    
      - An elevation of privilege vulnerability exists in
        Windows when the Win32k component fails to properly
        handle objects in memory. An attacker who successfully
        exploited this vulnerability could run arbitrary code in
        kernel mode. An attacker could then install programs;
        view, change, or delete data; or create new accounts
        with full user rights.  (CVE-2017-8720)
    
      - An information disclosure vulnerability exists when
        Windows Uniscribe improperly discloses the contents of
        its memory. An attacker who successfully exploited the
        vulnerability could obtain information to further
        compromise the users system. There are multiple ways an
        attacker could exploit the vulnerability, such as by
        convincing a user to open a specially crafted document
        or by convincing a user to visit an untrusted webpage.
        The update addresses the vulnerability by correcting how
        Windows Uniscribe handles objects in memory.
        (CVE-2017-8695)
    
      - An information disclosure vulnerability exists when
        Microsoft Edge improperly handles clipboard events. For
        an attack to be successful, an attacker must persuade a
        user to visit a malicious website and leave it open
        during clipboard activities. The update addresses the
        vulnerability by changing how Microsoft Edge handles
        clipboard events in the browser. (CVE-2017-8643)
    
      - A spoofing vulnerability exists in Microsoft's
        implementation of the Bluetooth stack. An attacker who
        successfully exploited this vulnerability could perform
        a man-in-the-middle attack and force a user's computer
        to unknowingly route traffic through the attacker's
        computer. The attacker can then monitor and read the
        traffic before sending it on to the intended recipient.
        (CVE-2017-8628)
    
      - An information disclosure vulnerability exists in
        Microsoft browsers due to improper parent domain
        verification in certain functionality. An attacker who
        successfully exploited the vulnerability could obtain
        specific information that is used in the parent domain.
        (CVE-2017-8736)
    
      - An information disclosure vulnerability exists when the
        Windows kernel improperly handles objects in memory. An
        attacker who successfully exploited this vulnerability
        could obtain information to further compromise the users
        system.  (CVE-2017-8678, CVE-2017-8679, CVE-2017-8709,
        CVE-2017-8719)
    
      - A vulnerability exists when Microsoft Edge improperly
        accesses objects in memory. The vulnerability could
        corrupt memory in such a way that an attacker could
        execute arbitrary code in the context of the current
        user.  (CVE-2017-11766)
    
      - A security feature bypass exists in Microsoft Edge when
        the Edge Content Security Policy (CSP) fails to properly
        validate certain specially crafted documents. An
        attacker who exploited the bypass could trick a user
        into loading a page containing malicious content.
        (CVE-2017-8723, CVE-2017-8754)
    
      - A remote code execution vulnerability exists when
        Microsoft .NET Framework processes untrusted input. An
        attacker who successfully exploited this vulnerability
        in software using the .NET framework could take control
        of an affected system. An attacker could then install
        programs; view, change, or delete data; or create new
        accounts with full user rights. Users whose accounts are
        configured to have fewer user rights on the system could
        be less impacted than users who operate with
        administrative user rights.  (CVE-2017-8759)
    
      - A information disclosure vulnerability exists when the
        Windows GDI+ component improperly discloses kernel
        memory addresses. An attacker who successfully exploited
        the vulnerability could obtain information to further
        compromise the users system.  (CVE-2017-8677,
        CVE-2017-8681)
    
      - An information disclosure vulnerability exists in the
        way that the Windows Graphics Device Interface (GDI)
        handles objects in memory, allowing an attacker to
        retrieve information from a targeted system. By itself,
        the information disclosure does not allow arbitrary code
        execution; however, it could allow arbitrary code to be
        run if the attacker uses it in combination with another
        vulnerability.  (CVE-2017-8688)
    
      - A remote code execution vulnerability exists due to the
        way Windows Uniscribe handles objects in memory. An
        attacker who successfully exploited this vulnerability
        could take control of the affected system. An attacker
        could then install programs; view, change, or delete
        data; or create new accounts with full user rights.
        (CVE-2017-8692)
    
      - An elevation of privilege vulnerability exists in
        Windows when the Windows kernel-mode driver fails to
        properly handle objects in memory. An attacker who
        successfully exploited this vulnerability could run
        arbitrary code in kernel mode. An attacker could then
        install programs; view, change, or delete data; or
        create new accounts with full user rights.
        (CVE-2017-8675)
    
      - A spoofing vulnerability exists when Microsoft Edge does
        not properly parse HTTP content. An attacker who
        successfully exploited this vulnerability could trick a
        user by redirecting the user to a specially crafted
        website. The specially crafted website could either
        spoof content or serve as a pivot to chain an attack
        with other vulnerabilities in web services.
        (CVE-2017-8735)
    
      - A spoofing vulnerability exists when Internet Explorer
        improperly handles specific HTML content. An attacker
        who successfully exploited this vulnerability could
        trick a user into believing that the user was visiting a
        legitimate website. The specially crafted website could
        either spoof content or serve as a pivot to chain an
        attack with other vulnerabilities in web services.
        (CVE-2017-8733)
    
      - A remote code execution vulnerability exists when
        Microsoft browsers improperly access objects in memory.
        The vulnerability could corrupt memory in such a way
        that an attacker could execute arbitrary code in the
        context of the current user.  (CVE-2017-8750)
    
      - An information disclosure vulnerability exists when the
        Windows kernel fails to properly initialize a memory
        address, allowing an attacker to retrieve information
        that could lead to a Kernel Address Space Layout
        Randomization (KASLR) bypass. An attacker who
        successfully exploited this vulnerability could retrieve
        the base address of the kernel driver from a compromised
        process.  (CVE-2017-8708)
    
      - A remote code execution vulnerability exists when the
        Windows font library improperly handles specially
        crafted embedded fonts. An attacker who successfully
        exploited this vulnerability could take control of the
        affected system. An attacker could then install
        programs; view, change, or delete data; or create new
        accounts with full user rights.  (CVE-2017-8682)
    
      - An elevation of privilege vulnerability exists in
        Windows Error Reporting (WER) when WER handles and
        executes files. The vulnerability could allow elevation
        of privilege if an attacker can successfully exploit it.
        An attacker who successfully exploited the vulnerability
        could gain greater access to sensitive information and
        system functionality.  (CVE-2017-8702)
    
      - A remote code execution vulnerability exists when
        Windows Shell does not properly validate file copy
        destinations. An attacker who successfully exploited the
        vulnerability could run arbitrary code in the context of
        the current user. If the current user is logged on with
        administrative user rights, an attacker could take
        control of the affected system. An attacker could then
        install programs; view, change, or delete data; or
        create new accounts with full user rights. Users whose
        accounts are configured to have fewer user rights on the
        system could be less impacted than users who operate
        with administrative user rights.  (CVE-2017-8699)
        
      - An information disclosure vulnerability exists in
        Microsoft browsers in the scripting engines due to
        improper handling of objects in memory. An
        unauthenticated, remote attacker can exploit this, by
        convincing a user to visit a specially crafted website,
        to disclose files on a user's computer. (CVE-2017-8529)");
      # https://support.microsoft.com/en-us/help/4038781/windows-10-update-kb4038781
      script_set_attribute(attribute:"see_also", value:"http://www.nessus.org/u?7c29dee1");
      script_set_attribute(attribute:"solution", value:
    "Apply security update KB4038781.");
      script_set_cvss_base_vector("CVSS2#AV:N/AC:M/Au:N/C:C/I:C/A:C");
      script_set_cvss_temporal_vector("CVSS2#E:H/RL:OF/RC:C");
      script_set_cvss3_base_vector("CVSS:3.0/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H");
      script_set_cvss3_temporal_vector("CVSS:3.0/E:H/RL:O/RC:C");
      script_set_attribute(attribute:"cvss_score_source", value:"CVE-2017-8759");
    
      script_set_attribute(attribute:"exploitability_ease", value:"Exploits are available");
      script_set_attribute(attribute:"exploit_available", value:"true");
      script_set_attribute(attribute:"exploit_framework_core", value:"true");
      script_set_attribute(attribute:"exploited_by_malware", value:"true");
      script_set_attribute(attribute:"exploit_framework_canvas", value:"true");
      script_set_attribute(attribute:"canvas_package", value:'CANVAS');
    
      script_set_attribute(attribute:"vuln_publication_date", value:"2017/09/12");
      script_set_attribute(attribute:"patch_publication_date", value:"2017/09/12");
      script_set_attribute(attribute:"plugin_publication_date", value:"2017/11/03");
    
      script_set_attribute(attribute:"plugin_type", value:"local");
      script_set_attribute(attribute:"cpe", value:"cpe:/o:microsoft:windows");
      script_end_attributes();
    
      script_category(ACT_GATHER_INFO);
      script_family(english:"Windows : Microsoft Bulletins");
    
      script_copyright(english:"This script is Copyright (C) 2017-2020 and is owned by Tenable, Inc. or an Affiliate thereof.");
    
      script_dependencies("smb_check_rollup.nasl", "smb_hotfixes.nasl", "ms_bulletin_checks_possible.nasl");
      script_require_keys("SMB/MS_Bulletin_Checks/Possible");
      script_require_ports(139, 445, "Host/patch_management_checks");
    
      exit(0);
    }
    
    include("audit.inc");
    include("smb_hotfixes_fcheck.inc");
    include("smb_hotfixes.inc");
    include("smb_func.inc");
    include("misc_func.inc");
    
    get_kb_item_or_exit("SMB/MS_Bulletin_Checks/Possible");
    
    bulletin = "MS17-09";
    kbs = make_list('4038781');
    
    if (get_kb_item("Host/patch_management_checks")) hotfix_check_3rd_party(bulletin:bulletin, kbs:kbs, severity:SECURITY_HOLE);
    
    get_kb_item_or_exit("SMB/Registry/Enumerated");
    get_kb_item_or_exit("SMB/WindowsVersion", exit_code:1);
    os_name = get_kb_item_or_exit("SMB/ProductName");
    
    if (hotfix_check_sp_range(win10:'0') <= 0) audit(AUDIT_OS_SP_NOT_VULN);
    if("LTSB" >!< os_name) audit(AUDIT_OS_NOT, "Windows 10 version 1507 LTSB");
    
    share = hotfix_get_systemdrive(as_share:TRUE, exit_on_fail:TRUE);
    if (!is_accessible_share(share:share)) audit(AUDIT_SHARE_FAIL, share);
    
    if (
      smb_check_rollup(os:"10",
                       sp:0,
                       os_build:"10240",
                       rollup_date:"09_2017",
                       bulletin:bulletin,
                       rollup_kb_list:[4038781])
    )
    {
      replace_kb_item(name:'SMB/Missing/'+bulletin, value:TRUE);
      hotfix_security_hole();
      hotfix_check_fversion_end();
      exit(0);
    }
    else
    {
      hotfix_check_fversion_end();
      audit(AUDIT_HOST_NOT, hotfix_get_audit_report());
    }
    
  • NASL familyWindows : Microsoft Bulletins
    NASL idSMB_NT_MS17_SEP_4038783.NASL
    descriptionThe remote Windows host is missing security update 4038783. It is, therefore, affected by multiple vulnerabilities : - A race condition that could lead to a remote code execution vulnerability exists in NetBT Session Services when NetBT fails to maintain certain sequencing requirements. (CVE-2017-0161) - A vulnerability exists when Microsoft Edge improperly accesses objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. (CVE-2017-11766) - A spoofing vulnerability exists in Microsoft
    last seen2020-05-31
    modified2017-09-12
    plugin id103129
    published2017-09-12
    reporterThis script is Copyright (C) 2017-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/103129
    titleKB4038783: Windows 10 Version 1511 September 2017 Cumulative Update
    code
    #
    # (C) Tenable Network Security, Inc.
    #
    # The descriptive text and package checks in this plugin were  
    # extracted from the Microsoft Security Updates API. The text
    # itself is copyright (C) Microsoft Corporation.
    #
    include("compat.inc");
    
    if (description)
    {
      script_id(103129);
      script_version("1.9");
      script_set_attribute(attribute:"plugin_modification_date", value:"2020/05/28");
    
      script_cve_id(
        "CVE-2017-0161",
        "CVE-2017-8529",
        "CVE-2017-8628",
        "CVE-2017-8643",
        "CVE-2017-8660",
        "CVE-2017-8675",
        "CVE-2017-8676",
        "CVE-2017-8677",
        "CVE-2017-8678",
        "CVE-2017-8679",
        "CVE-2017-8681",
        "CVE-2017-8682",
        "CVE-2017-8683",
        "CVE-2017-8687",
        "CVE-2017-8688",
        "CVE-2017-8692",
        "CVE-2017-8695",
        "CVE-2017-8699",
        "CVE-2017-8702",
        "CVE-2017-8706",
        "CVE-2017-8707",
        "CVE-2017-8708",
        "CVE-2017-8709",
        "CVE-2017-8713",
        "CVE-2017-8719",
        "CVE-2017-8720",
        "CVE-2017-8723",
        "CVE-2017-8728",
        "CVE-2017-8733",
        "CVE-2017-8734",
        "CVE-2017-8735",
        "CVE-2017-8736",
        "CVE-2017-8737",
        "CVE-2017-8738",
        "CVE-2017-8741",
        "CVE-2017-8747",
        "CVE-2017-8748",
        "CVE-2017-8749",
        "CVE-2017-8750",
        "CVE-2017-8752",
        "CVE-2017-8753",
        "CVE-2017-8754",
        "CVE-2017-8755",
        "CVE-2017-8756",
        "CVE-2017-8757",
        "CVE-2017-8759",
        "CVE-2017-11766"
      );
      script_xref(name:"MSKB", value:"4038783");
      script_xref(name:"MSFT", value:"MS17-4038783");
    
      script_name(english:"KB4038783: Windows 10 Version 1511 September 2017 Cumulative Update");
      script_summary(english:"Checks for rollup.");
    
      script_set_attribute(attribute:"synopsis", value:
    "The remote Windows host is affected by multiple vulnerabilities.");
      script_set_attribute(attribute:"description", value:
    "The remote Windows host is missing security update 4038783.
    It is, therefore, affected by multiple vulnerabilities :
    
      - A race condition that could lead to a remote code
        execution vulnerability exists in NetBT Session Services
        when NetBT fails to maintain certain sequencing
        requirements. (CVE-2017-0161)
    
      - A vulnerability exists when Microsoft Edge improperly
        accesses objects in memory. The vulnerability could
        corrupt memory in such a way that an attacker could
        execute arbitrary code in the context of the current
        user. (CVE-2017-11766)
    
      - A spoofing vulnerability exists in Microsoft's
        implementation of the Bluetooth stack. An attacker who
        successfully exploited this vulnerability could perform
        a man-in-the-middle attack and force a user's computer
        to unknowingly route traffic through the attacker's
        computer. The attacker can then monitor and read the
        traffic before sending it on to the intended recipient.
        (CVE-2017-8628)
    
      - An information disclosure vulnerability exists when
        Microsoft Edge improperly handles clipboard events. For
        an attack to be successful, an attacker must persuade a
        user to visit a malicious website and leave it open
        during clipboard activities. The update addresses the
        vulnerability by changing how Microsoft Edge handles
        clipboard events in the browser. (CVE-2017-8643)
    
      - An elevation of privilege vulnerability exists in
        Windows when the Windows kernel-mode driver fails to
        properly handle objects in memory. An attacker who
        successfully exploited this vulnerability could run
        arbitrary code in kernel mode. An attacker could then
        install programs; view, change, or delete data; or
        create new accounts with full user rights. To exploit
        this vulnerability, an attacker would first have to log
        on to the system. An attacker could then run a specially
        crafted application that could exploit the vulnerability
        and take control of an affected system. The update
        addresses this vulnerability by correcting how the
        Windows kernel-mode driver handles objects in memory.
        (CVE-2017-8675)
    
      - An information disclosure vulnerability exists in the
        way that the Windows Graphics Device Interface (GDI)
        handles objects in memory, allowing an attacker to
        retrieve information from a targeted system. By itself,
        the information disclosure does not allow arbitrary code
        execution; however, it could allow arbitrary code to be
        run if the attacker uses it in combination with another
        vulnerability. (CVE-2017-8676)
    
      - A information disclosure vulnerability exists when the
        Windows GDI+ component improperly discloses kernel
        memory addresses. An attacker who successfully exploited
        the vulnerability could obtain information to further
        compromise the users system.
        (CVE-2017-8677, CVE-2017-8681)
    
      - A remote code execution vulnerability exists when the
        Windows font library improperly handles specially
        crafted embedded fonts. An attacker who successfully
        exploited this vulnerability could take control of the
        affected system. An attacker could then install
        programs; view, change, or delete data; or create new
        accounts with full user rights.(CVE-2017-8682)
    
      - An information disclosure vulnerability exists when the
        Microsoft Windows Graphics Component improperly handles
        objects in memory. An attacker who successfully
        exploited the vulnerability could obtain information to
        further compromise the users system.
        (CVE-2017-8683)
    
      - An Information disclosure vulnerability exists in
        Windows kernel that could allow an attacker to retrieve
        information that could lead to a Kernel Address Space
        Layout Randomization (KASLR) bypass. An attacker who
        successfully exploited this vulnerability could retrieve
        the memory address of a kernel object. 
        (CVE-2017-8687)
    
      - An information disclosure vulnerability exists in the
        way that the Windows Graphics Device Interface+ (GDI+)
        handles objects in memory, allowing an attacker to
        retrieve information from a targeted system.
        (CVE-2017-8688)
    
      - A remote code execution vulnerability exists due to the
        way Windows Uniscribe handles objects in memory. An
        attacker who successfully exploited this vulnerability
        could take control of the affected system. An attacker
        could then install programs; view, change, or delete
        data; or create new accounts with full user rights.
        (CVE-2017-8692)
    
      - An information disclosure vulnerability exists when
        Windows Uniscribe improperly discloses the contents of
        its memory. An attacker who successfully exploited the
        vulnerability could obtain information to further
        compromise the users system.
        (CVE-2017-8695)
    
      - A remote code execution vulnerability exists when
        Windows Shell does not properly validate file copy
        destinations. An attacker who successfully exploited the
        vulnerability could run arbitrary code in the context of
        the current user. (CVE-2017-8699)
    
      - An elevation of privilege vulnerability exists in
        Windows Error Reporting (WER) when WER handles and
        executes files. The vulnerability could allow elevation
        of privilege if an attacker can successfully exploit it.
        An attacker who successfully exploited the vulnerability
        could gain greater access to sensitive information and
        system functionality.
        (CVE-2017-8702)
    
      - An information disclosure vulnerability exists when
        Windows Hyper-V on a host operating system fails to
        properly validate input from an authenticated user on a
        guest operating system.
        (CVE-2017-8706, CVE-2017-8707)
    
      - An information disclosure vulnerability exists when the
        Windows kernel fails to properly initialize a memory
        address, allowing an attacker to retrieve information
        that could lead to a Kernel Address Space Layout
        Randomization (KASLR) bypass. An attacker who
        successfully exploited this vulnerability could retrieve
        the base address of the kernel driver from a compromised
        process. (CVE-2017-8708)
    
      - An information disclosure vulnerability exists when
        Windows Hyper-V on a host operating system fails to
        properly validate input from an authenticated user on a
        guest operating system.
        (CVE-2017-8706, CVE-2017-8707, CVE-2017-8713)
    
      - An information disclosure vulnerability exists when the
        Windows kernel improperly handles objects in memory. An
        attacker who successfully exploited this vulnerability
        could obtain information to further compromise the users
        system.(CVE-2017-8678, CVE-2017-8679, CVE-2017-8709,
        CVE-2017-8719)
    
      - An elevation of privilege vulnerability exists in
        Windows when the Win32k component fails to properly
        handle objects in memory. An attacker who successfully
        exploited this vulnerability could run arbitrary code in
        kernel mode. An attacker could then install programs;
        view, change, or delete data; or create new accounts
        with full user rights.(CVE-2017-8720)
    
      - A spoofing vulnerability exists when Internet Explorer
        improperly handles specific HTML content. An attacker
        who successfully exploited this vulnerability could
        trick a user into believing that the user was visiting a
        legitimate website. The specially crafted website could
        either spoof content or serve as a pivot to chain an
        attack with other vulnerabilities in web services.
        (CVE-2017-8733)
    
      - A remote code execution vulnerability exists when
        Microsoft Edge improperly accesses objects in memory.
        The vulnerability could corrupt memory in such a way
        that enables an attacker to execute arbitrary code in
        the context of the current user. An attacker who
        successfully exploited the vulnerability could gain the
        same user rights as the current user.(CVE-2017-8734)
    
      - A spoofing vulnerability exists when Microsoft Edge does
        not properly parse HTTP content. An attacker who
        successfully exploited this vulnerability could trick a
        user by redirecting the user to a specially crafted
        website. The specially crafted website could either
        spoof content or serve as a pivot to chain an attack
        with other vulnerabilities in web services.
        (CVE-2017-8735)
    
      - An information disclosure vulnerability exists in
        Microsoft browsers due to improper parent domain
        verification in certain functionality. An attacker who
        successfully exploited the vulnerability could obtain
        specific information that is used in the parent domain.
        (CVE-2017-8736)
    
      - A remote code execution vulnerability exists when
        Microsoft Windows PDF Library improperly handles objects
        in memory. The vulnerability could corrupt memory in a
        way that enables an attacker to execute arbitrary code
        in the context of the current user. An attacker who
        successfully exploited the vulnerability could gain the
        same user rights as the current user.
        (CVE-2017-8728, CVE-2017-8737)
    
      - A remote code execution vulnerability exists in the way
        that Microsoft browser JavaScript engines render content
        when handling objects in memory. The vulnerability could
        corrupt memory in such a way that an attacker could
        execute arbitrary code in the context of the current
        user. (CVE-2017-8660, CVE-2017-8741, CVE-2017-8748)
    
      - A remote code execution vulnerability exists when
        Internet Explorer improperly accesses objects in memory.
        The vulnerability could corrupt memory in such a way
        that an attacker could execute arbitrary code in the
        context of the current user. (CVE-2017-8747,
        CVE-2017-8749)
    
      - A remote code execution vulnerability exists when
        Microsoft browsers improperly access objects in memory.
        The vulnerability could corrupt memory in such a way
        that an attacker could execute arbitrary code in the
        context of the current user. (CVE-2017-8750)
    
      - A security feature bypass exists in Microsoft Edge when
        the Edge Content Security Policy (CSP) fails to properly
        validate certain specially crafted documents. An
        attacker who exploited the bypass could trick a user
        into loading a page containing malicious content.
        (CVE-2017-8723, CVE-2017-8754)
    
      - A remote code execution vulnerability exists in the way
        that the scripting engine handles objects in memory in
        Microsoft Edge. The vulnerability could corrupt memory
        in such a way that an attacker could execute arbitrary
        code in the context of the current user. An attacker who
        successfully exploited the vulnerability could gain the
        same user rights as the current user.
        (CVE-2017-8738, CVE-2017-8752, CVE-2017-8753,
        CVE-2017-8755, CVE-2017-8756)
    
      - A remote code execution vulnerability exists in the way
        Microsoft Edge handles objects in memory. The
        vulnerability could corrupt memory in such a way that an
        attacker could execute arbitrary code in the context of
        the current user. An attacker who successfully exploited
        the vulnerability could gain the same user rights as the
        current user. (CVE-2017-8757)
    
      - A remote code execution vulnerability exists when
        Microsoft .NET Framework processes untrusted input. An
        attacker who successfully exploited this vulnerability
        in software using the .NET framework could take control
        of an affected system. An attacker could then install
        programs; view, change, or delete data; or create new
        accounts with full user rights. (CVE-2017-8759)
        
      - An information disclosure vulnerability exists in
        Microsoft browsers in the scripting engines due to
        improper handling of objects in memory. An
        unauthenticated, remote attacker can exploit this, by
        convincing a user to visit a specially crafted website,
        to disclose files on a user's computer. (CVE-2017-8529)");
      # https://support.microsoft.com/en-us/help/4038783/windows-10-update-kb4038783
      script_set_attribute(attribute:"see_also", value:"http://www.nessus.org/u?15cd901b");
      script_set_attribute(attribute:"solution", value:
    "Apply security update KB4038783.");
      script_set_cvss_base_vector("CVSS2#AV:N/AC:M/Au:N/C:C/I:C/A:C");
      script_set_cvss_temporal_vector("CVSS2#E:H/RL:OF/RC:C");
      script_set_cvss3_base_vector("CVSS:3.0/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H");
      script_set_cvss3_temporal_vector("CVSS:3.0/E:H/RL:O/RC:C");
      script_set_attribute(attribute:"cvss_score_source", value:"CVE-2017-8759");
    
      script_set_attribute(attribute:"exploitability_ease", value:"Exploits are available");
      script_set_attribute(attribute:"exploit_available", value:"true");
      script_set_attribute(attribute:"exploit_framework_core", value:"true");
      script_set_attribute(attribute:"exploited_by_malware", value:"true");
      script_set_attribute(attribute:"exploit_framework_canvas", value:"true");
      script_set_attribute(attribute:"canvas_package", value:'CANVAS');
    
      script_set_attribute(attribute:"vuln_publication_date", value:"2017/09/12");
      script_set_attribute(attribute:"patch_publication_date", value:"2017/09/12");
      script_set_attribute(attribute:"plugin_publication_date", value:"2017/09/12");
    
      script_set_attribute(attribute:"plugin_type", value:"local");
      script_set_attribute(attribute:"cpe", value:"cpe:/o:microsoft:windows");
      script_end_attributes();
    
      script_category(ACT_GATHER_INFO);
      script_family(english:"Windows : Microsoft Bulletins");
    
      script_copyright(english:"This script is Copyright (C) 2017-2020 and is owned by Tenable, Inc. or an Affiliate thereof.");
    
      script_dependencies("smb_check_rollup.nasl", "smb_hotfixes.nasl", "ms_bulletin_checks_possible.nasl");
      script_require_keys("SMB/MS_Bulletin_Checks/Possible");
      script_require_ports(139, 445, "Host/patch_management_checks");
    
      exit(0);
    }
    
    include("audit.inc");
    include("smb_hotfixes_fcheck.inc");
    include("smb_hotfixes.inc");
    include("smb_func.inc");
    include("misc_func.inc");
    
    get_kb_item_or_exit("SMB/MS_Bulletin_Checks/Possible");
    
    bulletin = "MS17-09";
    kbs = make_list('4038783');
    
    if (get_kb_item("Host/patch_management_checks")) hotfix_check_3rd_party(bulletin:bulletin, kbs:kbs, severity:SECURITY_HOLE);
    
    get_kb_item_or_exit("SMB/Registry/Enumerated");
    get_kb_item_or_exit("SMB/WindowsVersion", exit_code:1);
    
    if (hotfix_check_sp_range(win10:'0') <= 0) audit(AUDIT_OS_SP_NOT_VULN);
    
    share = hotfix_get_systemdrive(as_share:TRUE, exit_on_fail:TRUE);
    if (!is_accessible_share(share:share)) audit(AUDIT_SHARE_FAIL, share);
    
    if (
      smb_check_rollup(os:"10",
                       sp:0,
                       os_build:"10586",
                       rollup_date:"09_2017",
                       bulletin:bulletin,
                       rollup_kb_list:[4038783])
    )
    {
      replace_kb_item(name:'SMB/Missing/'+bulletin, value:TRUE);
      hotfix_security_hole();
      hotfix_check_fversion_end();
      exit(0);
    }
    else
    {
      hotfix_check_fversion_end();
      audit(AUDIT_HOST_NOT, hotfix_get_audit_report());
    }
    
  • NASL familyWindows : Microsoft Bulletins
    NASL idSMB_NT_MS17_SEP_4038788.NASL
    descriptionThe remote Windows host is missing security update 4038788. It is, therefore, affected by multiple vulnerabilities : - A race condition that could lead to a remote code execution vulnerability exists in NetBT Session Services when NetBT fails to maintain certain sequencing requirements. (CVE-2017-0161) - A vulnerability exists when Microsoft Edge improperly accesses objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. (CVE-2017-11766) - An information disclosure vulnerability exists when Microsoft Edge does not properly handle objects in memory. An attacker who successfully exploited the vulnerability could obtain information to further compromise the user
    last seen2020-05-31
    modified2017-09-12
    plugin id103130
    published2017-09-12
    reporterThis script is Copyright (C) 2017-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/103130
    titleKB4038788: Windows 10 Version 1703 September 2017 Cumulative Update
  • NASL familyWindows : Microsoft Bulletins
    NASL idSMB_NT_MS17_SEP_4038792.NASL
    descriptionThe remote Windows host is missing security update 4038793 or cumulative update 4038792. It is, therefore, affected by multiple vulnerabilities : - A race condition that could lead to a remote code execution vulnerability exists in NetBT Session Services when NetBT fails to maintain certain sequencing requirements. (CVE-2017-0161) - A spoofing vulnerability exists in Microsoft
    last seen2020-05-31
    modified2017-09-12
    plugin id103131
    published2017-09-12
    reporterThis script is Copyright (C) 2017-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/103131
    titleWindows 8.1 and Windows Server 2012 R2 September 2017 Security Updates
  • NASL familyWindows : Microsoft Bulletins
    NASL idSMB_NT_MS17_SEP_4038782.NASL
    descriptionThe remote Windows host is missing security update 4038782. It is, therefore, affected by multiple vulnerabilities : - A race condition that could lead to a remote code execution vulnerability exists in NetBT Session Services when NetBT fails to maintain certain sequencing requirements. (CVE-2017-0161) - A vulnerability exists when Microsoft Edge improperly accesses objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. (CVE-2017-11766) - A spoofing vulnerability exists in Microsoft
    last seen2020-05-31
    modified2017-09-12
    plugin id103128
    published2017-09-12
    reporterThis script is Copyright (C) 2017-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/103128
    titleKB4038782: Windows 10 Version 1607 and Windows Server 2016 September 2017 Cumulative Update
  • NASL familyWindows : Microsoft Bulletins
    NASL idSMB_NT_MS17_SEP_WIN2008.NASL
    descriptionThe remote Windows host is missing multiple security updates released on 2017/09/12. It is, therefore, affected by multiple vulnerabilities : - An information disclosure vulnerability exists when Windows Hyper-V on a host operating system fails to properly validate input from an authenticated user on a guest operating system. To exploit the vulnerability, an attacker on a guest operating system could run a specially crafted application that could cause the Hyper-V host operating system to disclose memory information. An attacker who successfully exploited the vulnerability could gain access to information on the Hyper-V host operating system. The security update addresses the vulnerability by correcting how Hyper-V validates guest operating system user input. (CVE-2017-8707) - An information disclosure vulnerability exists in the Windows System Information Console when it improperly parses XML input containing a reference to an external entity. An attacker who successfully exploited this vulnerability could read arbitrary files via an XML external entity (XXE) declaration. To exploit the vulnerability, an attacker could create a file containing specially crafted XML content and convince an authenticated user to open the file. The update addresses the vulnerability by modifying the way that the Windows System Information Console parses XML input. (CVE-2017-8710) - An Information disclosure vulnerability exists in Windows kernel that could allow an attacker to retrieve information that could lead to a Kernel Address Space Layout Randomization (KASLR) bypass. An attacker who successfully exploited this vulnerability could retrieve the memory address of a kernel object. To exploit this vulnerability, an attacker would have to log on to an affected system and run a specially crafted application. The security update addresses the vulnerability by correcting how the Windows kernel handles memory addresses. (CVE-2017-8687) - An information disclosure vulnerability exists when the Microsoft Windows Graphics Component improperly handles objects in memory. An attacker who successfully exploited the vulnerability could obtain information to further compromise the users system. To exploit this vulnerability, an attacker would have to log on to an affected system and run a specially crafted application. The vulnerability would not allow an attacker to execute code or to elevate user rights directly, but it could be used to obtain information that could be used to try to further compromise the affected system. The update addresses the vulnerability by correcting the way in which the Windows Graphics Component handles objects in memory. (CVE-2017-8683) - A remote code execution vulnerability exists when the Windows font library improperly handles specially crafted embedded fonts. An attacker who successfully exploited this vulnerability could take control of the affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. Users whose accounts are configured to have fewer user rights on the system could be less impacted than users who operate with administrative user rights. There are multiple ways an attacker could exploit this vulnerability. In a web- based attack scenario, an attacker could host a specially crafted website that is designed to exploit this vulnerability and then convince a user to view the website. An attacker would have no way to force users to view the attacker-controlled content. Instead, an attacker would have to convince users to take action, typically by getting them to click a link in an email message or in an Instant Messenger message that takes users to the attacker
    last seen2020-06-01
    modified2020-06-02
    plugin id103140
    published2017-09-12
    reporterThis script is Copyright (C) 2017-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/103140
    titleWindows 2008 September 2017 Multiple Security Updates

Seebug

bulletinFamilyexploit
description### General Overview Armis Labs revealed a new attack vector endangering major mobile, desktop, and IoT operating systems, including Android, iOS, Windows, and Linux, and the devices using them. The new vector is dubbed “BlueBorne”, as it spread through the air (airborne) and attacks devices via Bluetooth. Armis has also disclosed eight related zero-day vulnerabilities, four of which are classified as critical. BlueBorne allows attackers to take control of devices, access corporate data and networks, penetrate secure “air-gapped” networks, and spread malware laterally to adjacent devices. Armis reported these vulnerabilities to the responsible actors, and is working with them as patches are being identified and released. Here is a quick overview of how BlueBorne works: https://youtu.be/LLNtZKpL0P8 #### Blueborne Brief Overview What Is BlueBorne? BlueBorne is an attack vector by which hackers can leverage Bluetooth connections to penetrate and take complete control over targeted devices. BlueBorne affects ordinary computers, mobile phones, and the expanding realm of IoT devices. The attack does not require the targeted device to be paired to the attacker’s device, or even to be set on discoverable mode. Armis Labs has identified eight zero-day vulnerabilities so far, which indicate the existence and potential of the attack vector. Armis believes many more vulnerabilities await discovery in the various platforms using Bluetooth. These vulnerabilities are fully operational, and can be successfully exploited, as demonstrated in our research. The BlueBorne attack vector can be used to conduct a large range of offenses, including remote code execution as well as Man-in-The-Middle attacks. Additional Information: Download our Technical White Paper on BlueBorne ### What Is The Risk? The BlueBorne attack vector has several qualities which can have a devastating effect when combined. By spreading through the air, BlueBorne targets the weakest spot in the networks’ defense – and the only one that no security measure protects. Spreading from device to device through the air also makes BlueBorne highly infectious. Moreover, since the Bluetooth process has high privileges on all operating systems, exploiting it provides virtually full control over the device. Unfortunately, this set of capabilities is extremely desireable to a hacker. BlueBorne can serve any malicious objective, such as cyber espionage, data theft, ransomware, and even creating large botnets out of IoT devices like the Mirai Botnet or mobile devices as with the recent WireX Botnet. The BlueBorne attack vector surpasses the capabilities of most attack vectors by penetrating secure “air-gapped” networks which are disconnected from any other network, including the internet. ### How Wide Is The Threat? #### The threat posed by the BlueBorne attack vector The BlueBorne attack vector can potentially affect all devices with Bluetooth capabilities, estimated at over 8.2 billion devices today. Bluetooth is the leading and most widespread protocol for short-range communications, and is used by devices of all kinds, from regular computers and mobile devices to IoT devices such as TVs, watches, cars, and even medical appliances. The latest published reports show more than 2 billion Android, 2 billion Windows, and 1 billion Apple devices in use. Gartner reports that there are 8 billions connected or IoT devices in the world today, many of which have Bluetooth. ### What Is New About BlueBorne? #### A new airborne attack vector BlueBorne concerns us because of the medium by which it operates. Unlike the majority of attacks today, which rely on the internet, a BlueBorne attack spreads through the air. This works similarly to the two less extensive vulnerabilities discovered recently in a Broadcom Wi-Fi chip by Project Zero and Exodus. The vulnerabilities found in Wi-Fi chips affect only the peripherals of the device, and require another step to take control of the device. With BlueBorne, b attackers can gain full control right from the start. Moreover, Bluetooth offers a wider attacker surface than WiFi, almost entirely unexplored by the research community and hence contains far more vulnerabilities. Airborne attacks, unfortunately, provide a number of opportunities for the attacker. First, spreading through the air renders the attack much more contagious, and allows it to spread with minimum effort. Second, it allows the attack to bypass current security measures and remain undetected, as traditional methods do not protect from airborne threats. Airborne attacks can also allow hackers to penetrate secure internal networks which are “air gapped,” meaning they are disconnected from any other network for protection. This can endanger industrial systems, government agencies, and critical infrastructure. Finally, unlike traditional malware or attacks, the user does not have to click on a link or download a questionable file. No action by the user is necessary to enable the attack #### A comprehensive and severe threat The BlueBorne attack vector requires no user interaction, is compatible to all software versions, and does not require any preconditions or configurations aside of the Bluetooth being active. Unlike the common misconception, Bluetooth enabled devices are constantly searching for incoming connections from any devices, and not only those they have been paired with. This means a Bluetooth connection can be established without pairing the devices at all. This makes BlueBorne one of the most broad potential attacks found in recent years, and allows an attacker to strike completely undetected. #### Next generation Bluetooth vulnerabilities In the past, most Bluetooth vulnerabilities and security flaws originated in issues with the protocol itself, which were resolved in version 2.1 in 2007. Nearly all vulnerabilities found since were of low severity, and did not allow remote code execution. This transition occurred as the research community turned its eyes elsewhere, and did not scrutinize the implementations of the Bluetooth protocol in the different platforms, as it did with other major protocols. Bluetooth is a difficult protocol to implement, which makes it prone to two kinds of vulnerabilities. On the one hand, vendors are likely to follow the protocol’s implementation guidelines word-for-word, which means that when a vulnerability is found in one platform it might affect others. These mirrored vulnerabilities happened with CVE-2017-8628 and CVE-2017-0783 (Windows & Android MiTM) which are “identical twins”. On the other hand, in some areas the Bluetooth specifications leave too much room for interpretation, causing fragmented methods of implementation in the various platforms, making each of them more likely to contain a vulnerability of its own. This is why the vulnerabilities which comprise BlueBorne are based on the various implementations of the Bluetooth protocol, and are more prevalent and severe than those of recent years. We are concerned that the vulnerabilities we found are only the tip of the iceberg, and that the distinct implementations of the protocol on other platforms may contain additional vulnerabilities. #### A Coordinated Disclosure Armis reached out to the following actors to ensure a safe, secure, and coordinated response to the vulnerabilities identified. Google – Contacted on April 19, 2017, after which details were shared. Released public security update and security bulletin on September 4th, 2017. Coordinated disclosure on September 12th, 2017. Microsoft – Contacted on April 19, 2017 after which details were shared. Updates were made on July 11. Public disclosure on September 12, 2017 as part of coordinated disclosure. Apple – Contacted on August 9, 2017. Apple had no vulnerability in its current versions. Samsung – Contact on three separate occasions in April, May, and June. No response was received back from any outreach. Linux – Contacted August 15 and 17, 2017. On September 5, 2017, we connected and provided the necessary information to the the Linux kernel security team and to the Linux distributions security contact list and conversations followed from there. Targeting updates for on or about September 12, 2017 for coordinated disclosure. ### Affected Devices #### The threat posed by the vulnerabilities Armis disclosed The vulnerabilities disclosed by Armis affect all devices running on Android, Linux, Windows, and pre-version 10 of iOS operating systems, regardless of the Bluetooth version in use. This means almost every computer, mobile device, smart TV or other IoT device running on one of these operating systems is endangered by at least one of the eight vulnerabilities. This covers a significant portion of all connected devices globally. #### What Devices Are Affected? ##### Android All Android phones, tablets, and wearables (except those using only Bluetooth Low Energy) of all versions are affected by four vulnerabilities found in the Android operating system, two of which allow remote code execution (CVE-2017-0781 and CVE-2017-0782), one results in information leak (CVE-2017-0785) and the last allows an attacker to perform a Man-in-The-Middle attack (CVE-2017-0783). Examples of impacted devices: * Google Pixel * Samsung Galaxy * Samsung Galaxy Tab * LG Watch Sport * Pumpkin Car Audio System Google has issued a patch and notified its partners. It will be available for: * Nougat (7.0) * Marshmallow (6.0) Google has issued a security update patch and notified its partners. It was available to Android partners on August 7th, 2017, and made available as part of the September Security Update and Bulletin. We recommend that users check that Bulletin for the latest most accurate information. Android users should verify that they have the September 9, 2017 Security Patch Level, Note to Android users: To check if your device is risk or is the devices around you are at risk, download the Armis BlueBorne Scanner App on Google Play. ##### Windows All Windows computers since Windows Vista are affected by the “Bluetooth Pineapple” vulnerability which allows an attacker to perform a Man-in-The-Middle attack (CVE-2017-8628). Microsoft is issuing security patches to all supported Windows versions at 10 AM, Tuesday, September 12. We recommend that Windows users should check with the Microsoft release here for the latest information. ##### Linux Linux is the underlying operating system for a wide range of devices. The most commercial, and consumer-oriented platform based on Linux is the Tizen OS. * All Linux devices running BlueZ are affected by the information leak vulnerability (CVE-2017-1000250). * All Linux devices from version 3.3-rc1 (released in October 2011) are affected by the remote code execution vulnerability (CVE-2017-1000251). Examples of impacted devices: * Samsung Gear S3 (Smartwatch) * Samsung Smart TVs * Samsung Family Hub (Smart refrigerator) Information on Linux updates will be provided as soon as they are live. ##### iOS All iPhone, iPad and iPod touch devices with iOS 9.3.5 and lower, and AppleTV devices with version 7.2.2 and lower are affected by the remote code execution vulnerability. This vulnerability was already mitigated by Apple in iOS 10, so no new patch is needed to mitigate it. We recommend you upgrade to the latest iOS or tvOS available. If you are concerned that your device may not be patched, we recommend disabling Bluetooth, and minimizing its use until you can confirm a patch is issued and installed on your device. ### Technical Overview #### BlueBorne Explained: How The Attack Vector Works The BlueBorne attack vector has several stages. First, the attacker locates active Bluetooth connections around him or her. Devices can be identified even if they are not set to “discoverable” mode. Next, the attacker obtains the device’s MAC address, which is a unique identifier of that specific device. By probing the device, the attacker can determine which operating system his victim is using, and adjust his exploit accordingly. The attacker will then exploit a vulnerability in the implementation of the Bluetooth protocol in the relevant platform and gain the access he needs to act on his malicious objective. At this stage the attacker can choose to create a Man-in-The-Middle attack and control the device’s communication, or take full control over the device and use it for a wide array of cybercriminal purposes. [Download our Technical White Paper on BlueBorne](http://go.armis.com/blueborne-technical-paper) #### BlueBorne attack on Android Once the attacker determined his target is using the Android operating system, he can use four of the vulnerabilities disclosed by Armis to exploit the device, or they can use a separate vulnerability to conduct a Man-in-The-Middle attack. Here is a quick demo of how BlueBorne can take control of an Android device: https://youtu.be/Az-l90RCns8 ##### Information Leak Vulnerability (CVE-2017-0785) The first vulnerability in the Android operating system reveals valuable information which helps the attacker leverage one of the remote code execution vulnerabilities described below. The vulnerability was found in the SDP (Service Discovery Protocol) server, which enables the device to identify other Bluetooth services around it. The flaw allows the attacker to send a set of crafted requests to the server, causing it to disclose memory bits in response. These pieces of information can later be used by the attacker to overcome advanced security measures and take control over the device. This vulnerability can also allow an attacker to leak encryption keys from the targeted device and eavesdrop on Bluetooth communications, in an attack that very much resembles heartbleed. ##### Remote Code Execution Vulnerability #1 (CVE-2017-0781) This vulnerability resides in the Bluetooth Network Encapsulation Protocol (BNEP) service, which enables internet sharing over a Bluetooth connection (tethering). Due to a flaw in the BNEP service, a hacker can trigger a surgical memory corruption, which is easy to exploit and enables him to run code on the device, effectively granting him complete control. Due to lack of proper authorization validations, triggering this vulnerability does not require any user interaction, authentication or pairing, so the targeted user is completely unaware of an ongoing attack. ##### Remote Code Execution vulnerability #2 (CVE-2017-0782) This vulnerability is similar to the previous one, but resides in a higher level of the BNEP service – the Personal Area Networking (PAN) profile – which is responsible for establishing an IP based network connection between two devices. In this case, the memory corruption is larger, but can still be leveraged by an attacker to gain full control over the infected device. Similar to the previous vulnerability, this vulnerability can also be triggered without any user interaction, authentication or pairing. ##### The Bluetooth Pineapple – Man in The Middle attack (CVE-2017-0783) Man-in-The-Middle (MiTM) attacks allow the attacker to intercept and intervene in all data going to or from the targeted device. To create a MiTM attack using Wi-Fi, the attacker requires both special equipment, and a connection request from the targeted device to an open WiFi network. In Bluetooth, the attacker can actively engage his target, using any device with Bluetooth capabilities. The vulnerability resides in the PAN profile of the Bluetooth stack, and enables the attacker to create a malicious network interface on the victim’s device, re-configure IP routing and force the device to transmit all communication through the malicious network interface. This attack does not require any user interaction, authentication or pairing, making it practically invisible. #### BlueBorne attack on Windows We have disclosed a vulnerability in Windows which allows an attacker to conduct a Man-in-The-Middle attack. Here is a quick demo of how BlueBorne can take create a MiTM attack: https://youtu.be/QrHbZPO9Rnc ##### The Bluetooth Pineapple #2 – Man in The Middle attack (CVE-2017-8628) This vulnerability is identical to the one found in the Android operating system, and affects both systems since they shared the same principals in implementing some of the Bluetooth protocol. The vulnerability resides in the Bluetooth stack, and enables the attacker to create a malicious network interface on the victim’s device, re-configure IP routing and force the device to transmit all communication through it. This attack does not require any user interaction, authentication or pairing, making it also practically invisible. #### BlueBorne attack on Linux Armis has disclosed two vulnerabilities in the Linux operating system which allow attackers to take complete control over infected devices. The first is an information leak vulnerability, which can help the attacker determine the exact version used by the targeted device and adjust his exploit accordingly. The second is a stack overflow with can lead to full control of a device. Here is a quick demo of how BlueBorne can take over a Linux device: https://youtu.be/U7mWeKhd_-A ##### Information leak vulnerability (CVE-2017-1000250) Similar to the information leak vulnerability in Android, this vulnerability resides in the SDP server responsible for identifying other services using Bluetooth around the device. The flaw allows the attacker to send a set of crafted requests to the server, causing it to disclose memory bits in response. This can be used by an attacker to expose sensitive data from the Bluetooth processthat may also contain encryption keys of Bluetooth communications. These can be used by the attacker to initiate an attack that very much resembles heartbleed. ##### A stack overflow in BlueZ (CVE-2017-1000251) This vulnerability was found in the Bluetooth stack of the Linux Kernel, which is the very core of the operating system. An internal flaw in the L2CAP (Logical Link Control and Adaptation Protocol) that is used to connect between two devices causes a memory corruption. An attacker can use this memory corruption to gain full control of the device. #### BlueBorne attack on iOS This vulnerability found by Armis was disclosed to Apple. Since it was mitigated in iOS version 10 and Apple TV version above 7.2.2, a full exploit was not developed to demonstrate how this vulnerability can be leveraged for gaining full control of an iOS device. However, this vulnerability still poses great risk to any iOS device prior to version 10, as it is does not require any interaction from the users, or configuration of any sort on the targeted device. The vulnerability can be leveraged by an attacker to gain remote code execution in a high-privileged context (the Bluetooth process). ##### Remote code execution via Apple’s Low Energy Audio Protocol This vulnerability was found in a new protocol Apple has invented, which operates on top of Bluetooth, called LEAP (Low energy audio protocol). The protocol is designed to stream audio to low energy audio peripherals (such as low energy headsets, or the Siri Remote). This enables devices that only have Bluetooth Low Energy to stream audio and send audio commands. Due to a flaw in the implementation of LEAP, a large audio command can be sent to a targeted device and lead to a memory corruption. Since the audio commands sent via LEAP are not properly validated, an attacker can use the memory corruption to gain full control of the device. ### Securing against BlueBorne Vulnerabilities that can spread over the air and between devices pose a tremendous threat to any organization or individual. Current security measures, including endpoint protection, mobile data management, firewalls, and network security solution are not designed to identify these type of attacks, and related vulnerabilities and exploits, as their main focus is to block attacks that can spread via IP connections. New solutions are needed to address the new airborne attack vector, especially those that make air gapping irrelevant. Additionally, there will need to be more attention and research as new protocols are using for consumers and businesses alike. With the large number of desktop, mobile, and IoT devices only increasing, it is critical we can ensure these types of vulnerabilities are not exploited. This is the primary mission of Armis in this new connected age.
idSSV:96467
last seen2017-11-19
modified2017-09-13
published2017-09-13
reporterRoot
sourcehttps://www.seebug.org/vuldb/ssvid-96467
titleThe IoT Attack Vector “BlueBorne” Exposes Almost Every Connected Device (BlueBorne)

The Hacker News

idTHN:649BE2C710B04C213ECB85D95D5F229A
last seen2018-01-27
modified2017-09-12
published2017-09-12
reporterSwati Khandelwal
sourcehttps://thehackernews.com/2017/09/blueborne-bluetooth-hacking.html
titleBlueBorne: Critical Bluetooth Attack Puts Billions of Devices at Risk of Hacking