Vulnerabilities > CVE-2013-6331 - SQL Injection vulnerability in IBM Algo ONE

Attack vector
Attack complexity
Privileges required
Confidentiality impact
Integrity impact
Availability impact
low complexity


SQL injection vulnerability in IBM Algo One, as used in MetaData Management Tools in UDS 4.7.0 through 5.0.0, ACSWeb in Algo Security Access Control Management 4.7.0 through 4.9.0, and ACSWeb in AlgoWebApps 5.0.0, allows remote authenticated users to execute arbitrary SQL commands via unspecified vectors, a different vulnerability than CVE-2013-6302.

Common Attack Pattern Enumeration and Classification (CAPEC)

  • Command Line Execution through SQL Injection
    An attacker uses standard SQL injection methods to inject data into the command line for execution. This could be done directly through misuse of directives such as MSSQL_xp_cmdshell or indirectly through injection of data into the database that would be interpreted as shell commands. Sometime later, an unscrupulous backend application (or could be part of the functionality of the same application) fetches the injected data stored in the database and uses this data as command line arguments without performing proper validation. The malicious data escapes that data plane by spawning new commands to be executed on the host.
  • Object Relational Mapping Injection
    An attacker leverages a weakness present in the database access layer code generated with an Object Relational Mapping (ORM) tool or a weakness in the way that a developer used a persistence framework to inject his or her own SQL commands to be executed against the underlying database. The attack here is similar to plain SQL injection, except that the application does not use JDBC to directly talk to the database, but instead it uses a data access layer generated by an ORM tool or framework (e.g. Hibernate). While most of the time code generated by an ORM tool contains safe access methods that are immune to SQL injection, sometimes either due to some weakness in the generated code or due to the fact that the developer failed to use the generated access methods properly, SQL injection is still possible.
  • SQL Injection through SOAP Parameter Tampering
    An attacker modifies the parameters of the SOAP message that is sent from the service consumer to the service provider to initiate a SQL injection attack. On the service provider side, the SOAP message is parsed and parameters are not properly validated before being used to access a database in a way that does not use parameter binding, thus enabling the attacker to control the structure of the executed SQL query. This pattern describes a SQL injection attack with the delivery mechanism being a SOAP message.
  • Expanding Control over the Operating System from the Database
    An attacker is able to leverage access gained to the database to read / write data to the file system, compromise the operating system, create a tunnel for accessing the host machine, and use this access to potentially attack other machines on the same network as the database machine. Traditionally SQL injections attacks are viewed as a way to gain unauthorized read access to the data stored in the database, modify the data in the database, delete the data, etc. However, almost every data base management system (DBMS) system includes facilities that if compromised allow an attacker complete access to the file system, operating system, and full access to the host running the database. The attacker can then use this privileged access to launch subsequent attacks. These facilities include dropping into a command shell, creating user defined functions that can call system level libraries present on the host machine, stored procedures, etc.
  • SQL Injection
    This attack exploits target software that constructs SQL statements based on user input. An attacker crafts input strings so that when the target software constructs SQL statements based on the input, the resulting SQL statement performs actions other than those the application intended. SQL Injection results from failure of the application to appropriately validate input. When specially crafted user-controlled input consisting of SQL syntax is used without proper validation as part of SQL queries, it is possible to glean information from the database in ways not envisaged during application design. Depending upon the database and the design of the application, it may also be possible to leverage injection to have the database execute system-related commands of the attackers' choice. SQL Injection enables an attacker to talk directly to the database, thus bypassing the application completely. Successful injection can cause information disclosure as well as ability to add or modify data in the database. In order to successfully inject SQL and retrieve information from a database, an attacker:


descriptionCVE ID:CVE-2013-6299、CVE-2013-6300、CVE-2013-6301、CVE-2013-6302、CVE-2013-6303、CVE-2013-6318、CVE-2013-6319、CVE-2013-6320、CVE-2013-6331、CVE-2013-6333 IBM Algo One是一个风险管理软件解决方案。 IBM Algo One存在多个安全漏洞: 1,应用程序不正确校验用户权限,允许攻击者利用漏洞获取受限内容。 2,存在多个跨站脚本漏洞,允许攻击者构建恶意URI,诱使用户解析,可获得敏感Cookie,劫持会话或在客户端上进行恶意操作。 3,存在SQL注入漏洞,允许远程攻击者操作或获取数据库数据。 4,部分输入在用于读取文件内容时缺少过滤,允许攻击者利用漏洞通过目录遍历序列查看任意文件内容。 0 IBM Algo One 4.x IBM Algo One 5.x 厂商补丁: IBM ----- 用户可参考如下厂商提供的安全补丁以修复该漏洞:
last seen2017-11-19
titleIBM Algo One Algo多个安全漏洞