Vulnerabilities > Linux > Medium
DATE | CVE | VULNERABILITY TITLE | RISK |
---|---|---|---|
2024-10-21 | CVE-2024-47690 | Unspecified vulnerability in Linux Kernel In the Linux kernel, the following vulnerability has been resolved: f2fs: get rid of online repaire on corrupted directory syzbot reports a f2fs bug as below: kernel BUG at fs/f2fs/inode.c:896! RIP: 0010:f2fs_evict_inode+0x1598/0x15c0 fs/f2fs/inode.c:896 Call Trace: evict+0x532/0x950 fs/inode.c:704 dispose_list fs/inode.c:747 [inline] evict_inodes+0x5f9/0x690 fs/inode.c:797 generic_shutdown_super+0x9d/0x2d0 fs/super.c:627 kill_block_super+0x44/0x90 fs/super.c:1696 kill_f2fs_super+0x344/0x690 fs/f2fs/super.c:4898 deactivate_locked_super+0xc4/0x130 fs/super.c:473 cleanup_mnt+0x41f/0x4b0 fs/namespace.c:1373 task_work_run+0x24f/0x310 kernel/task_work.c:228 ptrace_notify+0x2d2/0x380 kernel/signal.c:2402 ptrace_report_syscall include/linux/ptrace.h:415 [inline] ptrace_report_syscall_exit include/linux/ptrace.h:477 [inline] syscall_exit_work+0xc6/0x190 kernel/entry/common.c:173 syscall_exit_to_user_mode_prepare kernel/entry/common.c:200 [inline] __syscall_exit_to_user_mode_work kernel/entry/common.c:205 [inline] syscall_exit_to_user_mode+0x279/0x370 kernel/entry/common.c:218 do_syscall_64+0x100/0x230 arch/x86/entry/common.c:89 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0010:f2fs_evict_inode+0x1598/0x15c0 fs/f2fs/inode.c:896 Online repaire on corrupted directory in f2fs_lookup() can generate dirty data/meta while racing w/ readonly remount, it may leave dirty inode after filesystem becomes readonly, however, checkpoint() will skips flushing dirty inode in a state of readonly mode, result in above panic. Let's get rid of online repaire in f2fs_lookup(), and leave the work to fsck.f2fs. | 5.5 |
2024-10-21 | CVE-2024-47692 | NULL Pointer Dereference vulnerability in Linux Kernel In the Linux kernel, the following vulnerability has been resolved: nfsd: return -EINVAL when namelen is 0 When we have a corrupted main.sqlite in /var/lib/nfs/nfsdcld/, it may result in namelen being 0, which will cause memdup_user() to return ZERO_SIZE_PTR. When we access the name.data that has been assigned the value of ZERO_SIZE_PTR in nfs4_client_to_reclaim(), null pointer dereference is triggered. [ T1205] ================================================================== [ T1205] BUG: KASAN: null-ptr-deref in nfs4_client_to_reclaim+0xe9/0x260 [ T1205] Read of size 1 at addr 0000000000000010 by task nfsdcld/1205 [ T1205] [ T1205] CPU: 11 PID: 1205 Comm: nfsdcld Not tainted 5.10.0-00003-g2c1423731b8d #406 [ T1205] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014 [ T1205] Call Trace: [ T1205] dump_stack+0x9a/0xd0 [ T1205] ? nfs4_client_to_reclaim+0xe9/0x260 [ T1205] __kasan_report.cold+0x34/0x84 [ T1205] ? nfs4_client_to_reclaim+0xe9/0x260 [ T1205] kasan_report+0x3a/0x50 [ T1205] nfs4_client_to_reclaim+0xe9/0x260 [ T1205] ? nfsd4_release_lockowner+0x410/0x410 [ T1205] cld_pipe_downcall+0x5ca/0x760 [ T1205] ? nfsd4_cld_tracking_exit+0x1d0/0x1d0 [ T1205] ? down_write_killable_nested+0x170/0x170 [ T1205] ? avc_policy_seqno+0x28/0x40 [ T1205] ? selinux_file_permission+0x1b4/0x1e0 [ T1205] rpc_pipe_write+0x84/0xb0 [ T1205] vfs_write+0x143/0x520 [ T1205] ksys_write+0xc9/0x170 [ T1205] ? __ia32_sys_read+0x50/0x50 [ T1205] ? ktime_get_coarse_real_ts64+0xfe/0x110 [ T1205] ? ktime_get_coarse_real_ts64+0xa2/0x110 [ T1205] do_syscall_64+0x33/0x40 [ T1205] entry_SYSCALL_64_after_hwframe+0x67/0xd1 [ T1205] RIP: 0033:0x7fdbdb761bc7 [ T1205] Code: 0f 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 514 [ T1205] RSP: 002b:00007fff8c4b7248 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 [ T1205] RAX: ffffffffffffffda RBX: 000000000000042b RCX: 00007fdbdb761bc7 [ T1205] RDX: 000000000000042b RSI: 00007fff8c4b75f0 RDI: 0000000000000008 [ T1205] RBP: 00007fdbdb761bb0 R08: 0000000000000000 R09: 0000000000000001 [ T1205] R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000042b [ T1205] R13: 0000000000000008 R14: 00007fff8c4b75f0 R15: 0000000000000000 [ T1205] ================================================================== Fix it by checking namelen. | 6.5 |
2024-10-21 | CVE-2024-47693 | Incomplete Cleanup vulnerability in Linux Kernel In the Linux kernel, the following vulnerability has been resolved: IB/core: Fix ib_cache_setup_one error flow cleanup When ib_cache_update return an error, we exit ib_cache_setup_one instantly with no proper cleanup, even though before this we had already successfully done gid_table_setup_one, that results in the kernel WARN below. Do proper cleanup using gid_table_cleanup_one before returning the err in order to fix the issue. WARNING: CPU: 4 PID: 922 at drivers/infiniband/core/cache.c:806 gid_table_release_one+0x181/0x1a0 Modules linked in: CPU: 4 UID: 0 PID: 922 Comm: c_repro Not tainted 6.11.0-rc1+ #3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:gid_table_release_one+0x181/0x1a0 Code: 44 8b 38 75 0c e8 2f cb 34 ff 4d 8b b5 28 05 00 00 e8 23 cb 34 ff 44 89 f9 89 da 4c 89 f6 48 c7 c7 d0 58 14 83 e8 4f de 21 ff <0f> 0b 4c 8b 75 30 e9 54 ff ff ff 48 8 3 c4 10 5b 5d 41 5c 41 5d 41 RSP: 0018:ffffc90002b835b0 EFLAGS: 00010286 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff811c8527 RDX: 0000000000000000 RSI: ffffffff811c8534 RDI: 0000000000000001 RBP: ffff8881011b3d00 R08: ffff88810b3abe00 R09: 205d303839303631 R10: 666572207972746e R11: 72746e6520444947 R12: 0000000000000001 R13: ffff888106390000 R14: ffff8881011f2110 R15: 0000000000000001 FS: 00007fecc3b70800(0000) GS:ffff88813bd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020000340 CR3: 000000010435a001 CR4: 00000000003706b0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? show_regs+0x94/0xa0 ? __warn+0x9e/0x1c0 ? gid_table_release_one+0x181/0x1a0 ? report_bug+0x1f9/0x340 ? gid_table_release_one+0x181/0x1a0 ? handle_bug+0xa2/0x110 ? exc_invalid_op+0x31/0xa0 ? asm_exc_invalid_op+0x16/0x20 ? __warn_printk+0xc7/0x180 ? __warn_printk+0xd4/0x180 ? gid_table_release_one+0x181/0x1a0 ib_device_release+0x71/0xe0 ? __pfx_ib_device_release+0x10/0x10 device_release+0x44/0xd0 kobject_put+0x135/0x3d0 put_device+0x20/0x30 rxe_net_add+0x7d/0xa0 rxe_newlink+0xd7/0x190 nldev_newlink+0x1b0/0x2a0 ? __pfx_nldev_newlink+0x10/0x10 rdma_nl_rcv_msg+0x1ad/0x2e0 rdma_nl_rcv_skb.constprop.0+0x176/0x210 netlink_unicast+0x2de/0x400 netlink_sendmsg+0x306/0x660 __sock_sendmsg+0x110/0x120 ____sys_sendmsg+0x30e/0x390 ___sys_sendmsg+0x9b/0xf0 ? kstrtouint+0x6e/0xa0 ? kstrtouint_from_user+0x7c/0xb0 ? get_pid_task+0xb0/0xd0 ? proc_fail_nth_write+0x5b/0x140 ? __fget_light+0x9a/0x200 ? preempt_count_add+0x47/0xa0 __sys_sendmsg+0x61/0xd0 do_syscall_64+0x50/0x110 entry_SYSCALL_64_after_hwframe+0x76/0x7e | 6.5 |
2024-10-21 | CVE-2024-47694 | NULL Pointer Dereference vulnerability in Linux Kernel 6.11 In the Linux kernel, the following vulnerability has been resolved: IB/mlx5: Fix UMR pd cleanup on error flow of driver init The cited commit moves the pd allocation from function mlx5r_umr_resource_cleanup() to a new function mlx5r_umr_cleanup(). So the fix in commit [1] is broken. | 5.5 |
2024-10-21 | CVE-2024-47699 | NULL Pointer Dereference vulnerability in Linux Kernel In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix potential null-ptr-deref in nilfs_btree_insert() Patch series "nilfs2: fix potential issues with empty b-tree nodes". This series addresses three potential issues with empty b-tree nodes that can occur with corrupted filesystem images, including one recently discovered by syzbot. This patch (of 3): If a b-tree is broken on the device, and the b-tree height is greater than 2 (the level of the root node is greater than 1) even if the number of child nodes of the b-tree root is 0, a NULL pointer dereference occurs in nilfs_btree_prepare_insert(), which is called from nilfs_btree_insert(). This is because, when the number of child nodes of the b-tree root is 0, nilfs_btree_do_lookup() does not set the block buffer head in any of path[x].bp_bh, leaving it as the initial value of NULL, but if the level of the b-tree root node is greater than 1, nilfs_btree_get_nonroot_node(), which accesses the buffer memory of path[x].bp_bh, is called. Fix this issue by adding a check to nilfs_btree_root_broken(), which performs sanity checks when reading the root node from the device, to detect this inconsistency. Thanks to Lizhi Xu for trying to solve the bug and clarifying the cause early on. | 5.5 |
2024-10-21 | CVE-2024-47700 | Divide By Zero vulnerability in Linux Kernel In the Linux kernel, the following vulnerability has been resolved: ext4: check stripe size compatibility on remount as well We disable stripe size in __ext4_fill_super if it is not a multiple of the cluster ratio however this check is missed when trying to remount. This can leave us with cases where stripe < cluster_ratio after remount:set making EXT4_B2C(sbi->s_stripe) become 0 that can cause some unforeseen bugs like divide by 0. Fix that by adding the check in remount path as well. | 5.5 |
2024-10-21 | CVE-2024-47702 | Unspecified vulnerability in Linux Kernel In the Linux kernel, the following vulnerability has been resolved: bpf: Fail verification for sign-extension of packet data/data_end/data_meta syzbot reported a kernel crash due to commit 1f1e864b6555 ("bpf: Handle sign-extenstin ctx member accesses"). The reason is due to sign-extension of 32-bit load for packet data/data_end/data_meta uapi field. The original code looks like: r2 = *(s32 *)(r1 + 76) /* load __sk_buff->data */ r3 = *(u32 *)(r1 + 80) /* load __sk_buff->data_end */ r0 = r2 r0 += 8 if r3 > r0 goto +1 ... Note that __sk_buff->data load has 32-bit sign extension. After verification and convert_ctx_accesses(), the final asm code looks like: r2 = *(u64 *)(r1 +208) r2 = (s32)r2 r3 = *(u64 *)(r1 +80) r0 = r2 r0 += 8 if r3 > r0 goto pc+1 ... Note that 'r2 = (s32)r2' may make the kernel __sk_buff->data address invalid which may cause runtime failure. Currently, in C code, typically we have void *data = (void *)(long)skb->data; void *data_end = (void *)(long)skb->data_end; ... and it will generate r2 = *(u64 *)(r1 +208) r3 = *(u64 *)(r1 +80) r0 = r2 r0 += 8 if r3 > r0 goto pc+1 If we allow sign-extension, void *data = (void *)(long)(int)skb->data; void *data_end = (void *)(long)skb->data_end; ... the generated code looks like r2 = *(u64 *)(r1 +208) r2 <<= 32 r2 s>>= 32 r3 = *(u64 *)(r1 +80) r0 = r2 r0 += 8 if r3 > r0 goto pc+1 and this will cause verification failure since "r2 <<= 32" is not allowed as "r2" is a packet pointer. To fix this issue for case r2 = *(s32 *)(r1 + 76) /* load __sk_buff->data */ this patch added additional checking in is_valid_access() callback function for packet data/data_end/data_meta access. | 5.5 |
2024-10-21 | CVE-2024-47703 | Unspecified vulnerability in Linux Kernel In the Linux kernel, the following vulnerability has been resolved: bpf, lsm: Add check for BPF LSM return value A bpf prog returning a positive number attached to file_alloc_security hook makes kernel panic. This happens because file system can not filter out the positive number returned by the LSM prog using IS_ERR, and misinterprets this positive number as a file pointer. Given that hook file_alloc_security never returned positive number before the introduction of BPF LSM, and other BPF LSM hooks may encounter similar issues, this patch adds LSM return value check in verifier, to ensure no unexpected value is returned. | 5.5 |
2024-10-21 | CVE-2024-47704 | NULL Pointer Dereference vulnerability in Linux Kernel In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check link_res->hpo_dp_link_enc before using it [WHAT & HOW] Functions dp_enable_link_phy and dp_disable_link_phy can pass link_res without initializing hpo_dp_link_enc and it is necessary to check for null before dereferencing. This fixes 2 FORWARD_NULL issues reported by Coverity. | 5.5 |
2024-10-21 | CVE-2024-47705 | NULL Pointer Dereference vulnerability in Linux Kernel In the Linux kernel, the following vulnerability has been resolved: block: fix potential invalid pointer dereference in blk_add_partition The blk_add_partition() function initially used a single if-condition (IS_ERR(part)) to check for errors when adding a partition. | 5.5 |