Vulnerabilities > Linux > Linux Kernel > 5.6.6
DATE | CVE | VULNERABILITY TITLE | RISK |
---|---|---|---|
2024-11-08 | CVE-2024-50196 | Improper Check for Unusual or Exceptional Conditions vulnerability in Linux Kernel In the Linux kernel, the following vulnerability has been resolved: pinctrl: ocelot: fix system hang on level based interrupts The current implementation only calls chained_irq_enter() and chained_irq_exit() if it detects pending interrupts. ``` for (i = 0; i < info->stride; i++) { uregmap_read(info->map, id_reg + 4 * i, ®); if (!reg) continue; chained_irq_enter(parent_chip, desc); ``` However, in case of GPIO pin configured in level mode and the parent controller configured in edge mode, GPIO interrupt might be lowered by the hardware. | 5.5 |
2024-11-08 | CVE-2024-50198 | NULL Pointer Dereference vulnerability in Linux Kernel In the Linux kernel, the following vulnerability has been resolved: iio: light: veml6030: fix IIO device retrieval from embedded device The dev pointer that is received as an argument in the in_illuminance_period_available_show function references the device embedded in the IIO device, not in the i2c client. dev_to_iio_dev() must be used to accessthe right data. | 5.5 |
2024-11-08 | CVE-2024-50202 | Improper Handling of Exceptional Conditions vulnerability in Linux Kernel In the Linux kernel, the following vulnerability has been resolved: nilfs2: propagate directory read errors from nilfs_find_entry() Syzbot reported that a task hang occurs in vcs_open() during a fuzzing test for nilfs2. The root cause of this problem is that in nilfs_find_entry(), which searches for directory entries, ignores errors when loading a directory page/folio via nilfs_get_folio() fails. If the filesystem images is corrupted, and the i_size of the directory inode is large, and the directory page/folio is successfully read but fails the sanity check, for example when it is zero-filled, nilfs_check_folio() may continue to spit out error messages in bursts. Fix this issue by propagating the error to the callers when loading a page/folio fails in nilfs_find_entry(). The current interface of nilfs_find_entry() and its callers is outdated and cannot propagate error codes such as -EIO and -ENOMEM returned via nilfs_find_entry(), so fix it together. | 5.5 |
2024-11-08 | CVE-2024-50205 | Divide By Zero vulnerability in Linux Kernel In the Linux kernel, the following vulnerability has been resolved: ALSA: firewire-lib: Avoid division by zero in apply_constraint_to_size() The step variable is initialized to zero. | 5.5 |
2024-11-08 | CVE-2024-50211 | Unspecified vulnerability in Linux Kernel In the Linux kernel, the following vulnerability has been resolved: udf: refactor inode_bmap() to handle error Refactor inode_bmap() to handle error since udf_next_aext() can return error now. | 3.3 |
2024-11-07 | CVE-2024-50142 | Unspecified vulnerability in Linux Kernel In the Linux kernel, the following vulnerability has been resolved: xfrm: validate new SA's prefixlen using SA family when sel.family is unset This expands the validation introduced in commit 07bf7908950a ("xfrm: Validate address prefix lengths in the xfrm selector.") syzbot created an SA with usersa.sel.family = AF_UNSPEC usersa.sel.prefixlen_s = 128 usersa.family = AF_INET Because of the AF_UNSPEC selector, verify_newsa_info doesn't put limits on prefixlen_{s,d}. | 5.5 |
2024-11-07 | CVE-2024-50143 | Use of Uninitialized Resource vulnerability in Linux Kernel In the Linux kernel, the following vulnerability has been resolved: udf: fix uninit-value use in udf_get_fileshortad Check for overflow when computing alen in udf_current_aext to mitigate later uninit-value use in udf_get_fileshortad KMSAN bug[1]. After applying the patch reproducer did not trigger any issue[2]. [1] https://syzkaller.appspot.com/bug?extid=8901c4560b7ab5c2f9df [2] https://syzkaller.appspot.com/x/log.txt?x=10242227980000 | 7.8 |
2024-11-07 | CVE-2024-50148 | Unspecified vulnerability in Linux Kernel In the Linux kernel, the following vulnerability has been resolved: Bluetooth: bnep: fix wild-memory-access in proto_unregister There's issue as follows: KASAN: maybe wild-memory-access in range [0xdead...108-0xdead...10f] CPU: 3 UID: 0 PID: 2805 Comm: rmmod Tainted: G W RIP: 0010:proto_unregister+0xee/0x400 Call Trace: <TASK> __do_sys_delete_module+0x318/0x580 do_syscall_64+0xc1/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f As bnep_init() ignore bnep_sock_init()'s return value, and bnep_sock_init() will cleanup all resource. | 5.5 |
2024-11-07 | CVE-2024-50150 | Use After Free vulnerability in Linux Kernel In the Linux kernel, the following vulnerability has been resolved: usb: typec: altmode should keep reference to parent The altmode device release refers to its parent device, but without keeping a reference to it. When registering the altmode, get a reference to the parent and put it in the release function. Before this fix, when using CONFIG_DEBUG_KOBJECT_RELEASE, we see issues like this: [ 43.572860] kobject: 'port0.0' (ffff8880057ba008): kobject_release, parent 0000000000000000 (delayed 3000) [ 43.573532] kobject: 'port0.1' (ffff8880057bd008): kobject_release, parent 0000000000000000 (delayed 1000) [ 43.574407] kobject: 'port0' (ffff8880057b9008): kobject_release, parent 0000000000000000 (delayed 3000) [ 43.575059] kobject: 'port1.0' (ffff8880057ca008): kobject_release, parent 0000000000000000 (delayed 4000) [ 43.575908] kobject: 'port1.1' (ffff8880057c9008): kobject_release, parent 0000000000000000 (delayed 4000) [ 43.576908] kobject: 'typec' (ffff8880062dbc00): kobject_release, parent 0000000000000000 (delayed 4000) [ 43.577769] kobject: 'port1' (ffff8880057bf008): kobject_release, parent 0000000000000000 (delayed 3000) [ 46.612867] ================================================================== [ 46.613402] BUG: KASAN: slab-use-after-free in typec_altmode_release+0x38/0x129 [ 46.614003] Read of size 8 at addr ffff8880057b9118 by task kworker/2:1/48 [ 46.614538] [ 46.614668] CPU: 2 UID: 0 PID: 48 Comm: kworker/2:1 Not tainted 6.12.0-rc1-00138-gedbae730ad31 #535 [ 46.615391] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014 [ 46.616042] Workqueue: events kobject_delayed_cleanup [ 46.616446] Call Trace: [ 46.616648] <TASK> [ 46.616820] dump_stack_lvl+0x5b/0x7c [ 46.617112] ? typec_altmode_release+0x38/0x129 [ 46.617470] print_report+0x14c/0x49e [ 46.617769] ? rcu_read_unlock_sched+0x56/0x69 [ 46.618117] ? __virt_addr_valid+0x19a/0x1ab [ 46.618456] ? kmem_cache_debug_flags+0xc/0x1d [ 46.618807] ? typec_altmode_release+0x38/0x129 [ 46.619161] kasan_report+0x8d/0xb4 [ 46.619447] ? typec_altmode_release+0x38/0x129 [ 46.619809] ? process_scheduled_works+0x3cb/0x85f [ 46.620185] typec_altmode_release+0x38/0x129 [ 46.620537] ? process_scheduled_works+0x3cb/0x85f [ 46.620907] device_release+0xaf/0xf2 [ 46.621206] kobject_delayed_cleanup+0x13b/0x17a [ 46.621584] process_scheduled_works+0x4f6/0x85f [ 46.621955] ? __pfx_process_scheduled_works+0x10/0x10 [ 46.622353] ? hlock_class+0x31/0x9a [ 46.622647] ? lock_acquired+0x361/0x3c3 [ 46.622956] ? move_linked_works+0x46/0x7d [ 46.623277] worker_thread+0x1ce/0x291 [ 46.623582] ? __kthread_parkme+0xc8/0xdf [ 46.623900] ? __pfx_worker_thread+0x10/0x10 [ 46.624236] kthread+0x17e/0x190 [ 46.624501] ? kthread+0xfb/0x190 [ 46.624756] ? __pfx_kthread+0x10/0x10 [ 46.625015] ret_from_fork+0x20/0x40 [ 46.625268] ? __pfx_kthread+0x10/0x10 [ 46.625532] ret_from_fork_asm+0x1a/0x30 [ 46.625805] </TASK> [ 46.625953] [ 46.626056] Allocated by task 678: [ 46.626287] kasan_save_stack+0x24/0x44 [ 46.626555] kasan_save_track+0x14/0x2d [ 46.626811] __kasan_kmalloc+0x3f/0x4d [ 46.627049] __kmalloc_noprof+0x1bf/0x1f0 [ 46.627362] typec_register_port+0x23/0x491 [ 46.627698] cros_typec_probe+0x634/0xbb6 [ 46.628026] platform_probe+0x47/0x8c [ 46.628311] really_probe+0x20a/0x47d [ 46.628605] device_driver_attach+0x39/0x72 [ 46.628940] bind_store+0x87/0xd7 [ 46.629213] kernfs_fop_write_iter+0x1aa/0x218 [ 46.629574] vfs_write+0x1d6/0x29b [ 46.629856] ksys_write+0xcd/0x13b [ 46.630128] do_syscall_64+0xd4/0x139 [ 46.630420] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 46.630820] [ 46.630946] Freed by task 48: [ 46.631182] kasan_save_stack+0x24/0x44 [ 46.631493] kasan_save_track+0x14/0x2d [ 46.631799] kasan_save_free_info+0x3f/0x4d [ 46.632144] __kasan_slab_free+0x37/0x45 [ 46.632474] ---truncated--- | 7.8 |
2024-11-07 | CVE-2024-50151 | Out-of-bounds Write vulnerability in Linux Kernel In the Linux kernel, the following vulnerability has been resolved: smb: client: fix OOBs when building SMB2_IOCTL request When using encryption, either enforced by the server or when using 'seal' mount option, the client will squash all compound request buffers down for encryption into a single iov in smb2_set_next_command(). SMB2_ioctl_init() allocates a small buffer (448 bytes) to hold the SMB2_IOCTL request in the first iov, and if the user passes an input buffer that is greater than 328 bytes, smb2_set_next_command() will end up writing off the end of @rqst->iov[0].iov_base as shown below: mount.cifs //srv/share /mnt -o ...,seal ln -s $(perl -e "print('a')for 1..1024") /mnt/link BUG: KASAN: slab-out-of-bounds in smb2_set_next_command.cold+0x1d6/0x24c [cifs] Write of size 4116 at addr ffff8881148fcab8 by task ln/859 CPU: 1 UID: 0 PID: 859 Comm: ln Not tainted 6.12.0-rc3 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x5d/0x80 ? smb2_set_next_command.cold+0x1d6/0x24c [cifs] print_report+0x156/0x4d9 ? smb2_set_next_command.cold+0x1d6/0x24c [cifs] ? __virt_addr_valid+0x145/0x310 ? __phys_addr+0x46/0x90 ? smb2_set_next_command.cold+0x1d6/0x24c [cifs] kasan_report+0xda/0x110 ? smb2_set_next_command.cold+0x1d6/0x24c [cifs] kasan_check_range+0x10f/0x1f0 __asan_memcpy+0x3c/0x60 smb2_set_next_command.cold+0x1d6/0x24c [cifs] smb2_compound_op+0x238c/0x3840 [cifs] ? kasan_save_track+0x14/0x30 ? kasan_save_free_info+0x3b/0x70 ? vfs_symlink+0x1a1/0x2c0 ? do_symlinkat+0x108/0x1c0 ? __pfx_smb2_compound_op+0x10/0x10 [cifs] ? kmem_cache_free+0x118/0x3e0 ? cifs_get_writable_path+0xeb/0x1a0 [cifs] smb2_get_reparse_inode+0x423/0x540 [cifs] ? __pfx_smb2_get_reparse_inode+0x10/0x10 [cifs] ? rcu_is_watching+0x20/0x50 ? __kmalloc_noprof+0x37c/0x480 ? smb2_create_reparse_symlink+0x257/0x490 [cifs] ? smb2_create_reparse_symlink+0x38f/0x490 [cifs] smb2_create_reparse_symlink+0x38f/0x490 [cifs] ? __pfx_smb2_create_reparse_symlink+0x10/0x10 [cifs] ? find_held_lock+0x8a/0xa0 ? hlock_class+0x32/0xb0 ? __build_path_from_dentry_optional_prefix+0x19d/0x2e0 [cifs] cifs_symlink+0x24f/0x960 [cifs] ? __pfx_make_vfsuid+0x10/0x10 ? __pfx_cifs_symlink+0x10/0x10 [cifs] ? make_vfsgid+0x6b/0xc0 ? generic_permission+0x96/0x2d0 vfs_symlink+0x1a1/0x2c0 do_symlinkat+0x108/0x1c0 ? __pfx_do_symlinkat+0x10/0x10 ? strncpy_from_user+0xaa/0x160 __x64_sys_symlinkat+0xb9/0xf0 do_syscall_64+0xbb/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f08d75c13bb | 7.8 |