Vulnerabilities > Linux > Linux Kernel > 5.15.20

DATE CVE VULNERABILITY TITLE RISK
2024-07-16 CVE-2022-48788 Use After Free vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: nvme-rdma: fix possible use-after-free in transport error_recovery work While nvme_rdma_submit_async_event_work is checking the ctrl and queue state before preparing the AER command and scheduling io_work, in order to fully prevent a race where this check is not reliable the error recovery work must flush async_event_work before continuing to destroy the admin queue after setting the ctrl state to RESETTING such that there is no race .submit_async_event and the error recovery handler itself changing the ctrl state.
local
low complexity
linux CWE-416
7.8
2024-07-16 CVE-2022-48789 Use After Free vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: nvme-tcp: fix possible use-after-free in transport error_recovery work While nvme_tcp_submit_async_event_work is checking the ctrl and queue state before preparing the AER command and scheduling io_work, in order to fully prevent a race where this check is not reliable the error recovery work must flush async_event_work before continuing to destroy the admin queue after setting the ctrl state to RESETTING such that there is no race .submit_async_event and the error recovery handler itself changing the ctrl state.
local
low complexity
linux CWE-416
7.8
2024-07-16 CVE-2022-48790 Use After Free vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: nvme: fix a possible use-after-free in controller reset during load Unlike .queue_rq, in .submit_async_event drivers may not check the ctrl readiness for AER submission.
local
high complexity
linux CWE-416
7.0
2024-07-16 CVE-2022-48791 Use After Free vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: scsi: pm8001: Fix use-after-free for aborted TMF sas_task Currently a use-after-free may occur if a TMF sas_task is aborted before we handle the IO completion in mpi_ssp_completion().
local
low complexity
linux CWE-416
7.8
2024-07-16 CVE-2022-48792 Use After Free vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: scsi: pm8001: Fix use-after-free for aborted SSP/STP sas_task Currently a use-after-free may occur if a sas_task is aborted by the upper layer before we handle the I/O completion in mpi_ssp_completion() or mpi_sata_completion(). In this case, the following are the two steps in handling those I/O completions: - Call complete() to inform the upper layer handler of completion of the I/O. - Release driver resources associated with the sas_task in pm8001_ccb_task_free() call. When complete() is called, the upper layer may free the sas_task.
local
low complexity
linux CWE-416
7.8
2024-07-16 CVE-2022-48793 NULL Pointer Dereference vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: KVM: x86: nSVM: fix potential NULL derefernce on nested migration Turns out that due to review feedback and/or rebases I accidentally moved the call to nested_svm_load_cr3 to be too early, before the NPT is enabled, which is very wrong to do. KVM can't even access guest memory at that point as nested NPT is needed for that, and of course it won't initialize the walk_mmu, which is main issue the patch was addressing. Fix this for real.
local
low complexity
linux CWE-476
5.5
2024-07-16 CVE-2022-48796 Use After Free vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: iommu: Fix potential use-after-free during probe Kasan has reported the following use after free on dev->iommu. when a device probe fails and it is in process of freeing dev->iommu in dev_iommu_free function, a deferred_probe_work_func runs in parallel and tries to access dev->iommu->fwspec in of_iommu_configure path thus causing use after free. BUG: KASAN: use-after-free in of_iommu_configure+0xb4/0x4a4 Read of size 8 at addr ffffff87a2f1acb8 by task kworker/u16:2/153 Workqueue: events_unbound deferred_probe_work_func Call trace: dump_backtrace+0x0/0x33c show_stack+0x18/0x24 dump_stack_lvl+0x16c/0x1e0 print_address_description+0x84/0x39c __kasan_report+0x184/0x308 kasan_report+0x50/0x78 __asan_load8+0xc0/0xc4 of_iommu_configure+0xb4/0x4a4 of_dma_configure_id+0x2fc/0x4d4 platform_dma_configure+0x40/0x5c really_probe+0x1b4/0xb74 driver_probe_device+0x11c/0x228 __device_attach_driver+0x14c/0x304 bus_for_each_drv+0x124/0x1b0 __device_attach+0x25c/0x334 device_initial_probe+0x24/0x34 bus_probe_device+0x78/0x134 deferred_probe_work_func+0x130/0x1a8 process_one_work+0x4c8/0x970 worker_thread+0x5c8/0xaec kthread+0x1f8/0x220 ret_from_fork+0x10/0x18 Allocated by task 1: ____kasan_kmalloc+0xd4/0x114 __kasan_kmalloc+0x10/0x1c kmem_cache_alloc_trace+0xe4/0x3d4 __iommu_probe_device+0x90/0x394 probe_iommu_group+0x70/0x9c bus_for_each_dev+0x11c/0x19c bus_iommu_probe+0xb8/0x7d4 bus_set_iommu+0xcc/0x13c arm_smmu_bus_init+0x44/0x130 [arm_smmu] arm_smmu_device_probe+0xb88/0xc54 [arm_smmu] platform_drv_probe+0xe4/0x13c really_probe+0x2c8/0xb74 driver_probe_device+0x11c/0x228 device_driver_attach+0xf0/0x16c __driver_attach+0x80/0x320 bus_for_each_dev+0x11c/0x19c driver_attach+0x38/0x48 bus_add_driver+0x1dc/0x3a4 driver_register+0x18c/0x244 __platform_driver_register+0x88/0x9c init_module+0x64/0xff4 [arm_smmu] do_one_initcall+0x17c/0x2f0 do_init_module+0xe8/0x378 load_module+0x3f80/0x4a40 __se_sys_finit_module+0x1a0/0x1e4 __arm64_sys_finit_module+0x44/0x58 el0_svc_common+0x100/0x264 do_el0_svc+0x38/0xa4 el0_svc+0x20/0x30 el0_sync_handler+0x68/0xac el0_sync+0x160/0x180 Freed by task 1: kasan_set_track+0x4c/0x84 kasan_set_free_info+0x28/0x4c ____kasan_slab_free+0x120/0x15c __kasan_slab_free+0x18/0x28 slab_free_freelist_hook+0x204/0x2fc kfree+0xfc/0x3a4 __iommu_probe_device+0x284/0x394 probe_iommu_group+0x70/0x9c bus_for_each_dev+0x11c/0x19c bus_iommu_probe+0xb8/0x7d4 bus_set_iommu+0xcc/0x13c arm_smmu_bus_init+0x44/0x130 [arm_smmu] arm_smmu_device_probe+0xb88/0xc54 [arm_smmu] platform_drv_probe+0xe4/0x13c really_probe+0x2c8/0xb74 driver_probe_device+0x11c/0x228 device_driver_attach+0xf0/0x16c __driver_attach+0x80/0x320 bus_for_each_dev+0x11c/0x19c driver_attach+0x38/0x48 bus_add_driver+0x1dc/0x3a4 driver_register+0x18c/0x244 __platform_driver_register+0x88/0x9c init_module+0x64/0xff4 [arm_smmu] do_one_initcall+0x17c/0x2f0 do_init_module+0xe8/0x378 load_module+0x3f80/0x4a40 __se_sys_finit_module+0x1a0/0x1e4 __arm64_sys_finit_module+0x44/0x58 el0_svc_common+0x100/0x264 do_el0_svc+0x38/0xa4 el0_svc+0x20/0x30 el0_sync_handler+0x68/0xac el0_sync+0x160/0x180 Fix this by setting dev->iommu to NULL first and then freeing dev_iommu structure in dev_iommu_free function.
local
low complexity
linux CWE-416
7.8
2024-07-16 CVE-2022-48804 Integer Underflow (Wrap or Wraparound) vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: vt_ioctl: fix array_index_nospec in vt_setactivate array_index_nospec ensures that an out-of-bounds value is set to zero on the transient path.
local
low complexity
linux CWE-191
5.5
2024-07-16 CVE-2022-48808 Unspecified vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: net: dsa: fix panic when DSA master device unbinds on shutdown Rafael reports that on a system with LX2160A and Marvell DSA switches, if a reboot occurs while the DSA master (dpaa2-eth) is up, the following panic can be seen: systemd-shutdown[1]: Rebooting. Unable to handle kernel paging request at virtual address 00a0000800000041 [00a0000800000041] address between user and kernel address ranges Internal error: Oops: 96000004 [#1] PREEMPT SMP CPU: 6 PID: 1 Comm: systemd-shutdow Not tainted 5.16.5-00042-g8f5585009b24 #32 pc : dsa_slave_netdevice_event+0x130/0x3e4 lr : raw_notifier_call_chain+0x50/0x6c Call trace: dsa_slave_netdevice_event+0x130/0x3e4 raw_notifier_call_chain+0x50/0x6c call_netdevice_notifiers_info+0x54/0xa0 __dev_close_many+0x50/0x130 dev_close_many+0x84/0x120 unregister_netdevice_many+0x130/0x710 unregister_netdevice_queue+0x8c/0xd0 unregister_netdev+0x20/0x30 dpaa2_eth_remove+0x68/0x190 fsl_mc_driver_remove+0x20/0x5c __device_release_driver+0x21c/0x220 device_release_driver_internal+0xac/0xb0 device_links_unbind_consumers+0xd4/0x100 __device_release_driver+0x94/0x220 device_release_driver+0x28/0x40 bus_remove_device+0x118/0x124 device_del+0x174/0x420 fsl_mc_device_remove+0x24/0x40 __fsl_mc_device_remove+0xc/0x20 device_for_each_child+0x58/0xa0 dprc_remove+0x90/0xb0 fsl_mc_driver_remove+0x20/0x5c __device_release_driver+0x21c/0x220 device_release_driver+0x28/0x40 bus_remove_device+0x118/0x124 device_del+0x174/0x420 fsl_mc_bus_remove+0x80/0x100 fsl_mc_bus_shutdown+0xc/0x1c platform_shutdown+0x20/0x30 device_shutdown+0x154/0x330 __do_sys_reboot+0x1cc/0x250 __arm64_sys_reboot+0x20/0x30 invoke_syscall.constprop.0+0x4c/0xe0 do_el0_svc+0x4c/0x150 el0_svc+0x24/0xb0 el0t_64_sync_handler+0xa8/0xb0 el0t_64_sync+0x178/0x17c It can be seen from the stack trace that the problem is that the deregistration of the master causes a dev_close(), which gets notified as NETDEV_GOING_DOWN to dsa_slave_netdevice_event(). But dsa_switch_shutdown() has already run, and this has unregistered the DSA slave interfaces, and yet, the NETDEV_GOING_DOWN handler attempts to call dev_close_many() on those slave interfaces, leading to the problem. The previous attempt to avoid the NETDEV_GOING_DOWN on the master after dsa_switch_shutdown() was called seems improper.
local
low complexity
linux
5.5
2024-07-16 CVE-2022-48809 Memory Leak vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: net: fix a memleak when uncloning an skb dst and its metadata When uncloning an skb dst and its associated metadata, a new dst+metadata is allocated and later replaces the old one in the skb. This is helpful to have a non-shared dst+metadata attached to a specific skb. The issue is the uncloned dst+metadata is initialized with a refcount of 1, which is increased to 2 before attaching it to the skb.
local
low complexity
linux CWE-401
5.5