Vulnerabilities > Linux > Linux Kernel > 4.4.74

DATE CVE VULNERABILITY TITLE RISK
2024-07-29 CVE-2024-41066 Memory Leak vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: ibmvnic: Add tx check to prevent skb leak Below is a summary of how the driver stores a reference to an skb during transmit: tx_buff[free_map[consumer_index]]->skb = new_skb; free_map[consumer_index] = IBMVNIC_INVALID_MAP; consumer_index ++; Where variable data looks like this: free_map == [4, IBMVNIC_INVALID_MAP, IBMVNIC_INVALID_MAP, 0, 3] consumer_index^ tx_buff == [skb=null, skb=<ptr>, skb=<ptr>, skb=null, skb=null] The driver has checks to ensure that free_map[consumer_index] pointed to a valid index but there was no check to ensure that this index pointed to an unused/null skb address.
local
low complexity
linux CWE-401
5.5
2024-07-29 CVE-2024-41070 Use After Free vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: KVM: PPC: Book3S HV: Prevent UAF in kvm_spapr_tce_attach_iommu_group() Al reported a possible use-after-free (UAF) in kvm_spapr_tce_attach_iommu_group(). It looks up `stt` from tablefd, but then continues to use it after doing fdput() on the returned fd.
local
low complexity
linux CWE-416
7.8
2024-07-29 CVE-2024-41071 Improper Validation of Array Index vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: Avoid address calculations via out of bounds array indexing req->n_channels must be set before req->channels[] can be used. This patch fixes one of the issues encountered in [1]. [ 83.964255] UBSAN: array-index-out-of-bounds in net/mac80211/scan.c:364:4 [ 83.964258] index 0 is out of range for type 'struct ieee80211_channel *[]' [...] [ 83.964264] Call Trace: [ 83.964267] <TASK> [ 83.964269] dump_stack_lvl+0x3f/0xc0 [ 83.964274] __ubsan_handle_out_of_bounds+0xec/0x110 [ 83.964278] ieee80211_prep_hw_scan+0x2db/0x4b0 [ 83.964281] __ieee80211_start_scan+0x601/0x990 [ 83.964291] nl80211_trigger_scan+0x874/0x980 [ 83.964295] genl_family_rcv_msg_doit+0xe8/0x160 [ 83.964298] genl_rcv_msg+0x240/0x270 [...] [1] https://bugzilla.kernel.org/show_bug.cgi?id=218810
local
low complexity
linux CWE-129
7.8
2024-07-29 CVE-2024-41073 Double Free vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: nvme: avoid double free special payload If a discard request needs to be retried, and that retry may fail before a new special payload is added, a double free will result.
local
low complexity
linux CWE-415
7.8
2024-07-29 CVE-2024-41076 Memory Leak vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: NFSv4: Fix memory leak in nfs4_set_security_label We leak nfs_fattr and nfs4_label every time we set a security xattr.
local
low complexity
linux CWE-401
5.5
2024-07-29 CVE-2024-41080 Improper Locking vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: io_uring: fix possible deadlock in io_register_iowq_max_workers() The io_register_iowq_max_workers() function calls io_put_sq_data(), which acquires the sqd->lock without releasing the uring_lock. Similar to the commit 009ad9f0c6ee ("io_uring: drop ctx->uring_lock before acquiring sqd->lock"), this can lead to a potential deadlock situation. To resolve this issue, the uring_lock is released before calling io_put_sq_data(), and then it is re-acquired after the function call. This change ensures that the locks are acquired in the correct order, preventing the possibility of a deadlock.
local
low complexity
linux CWE-667
5.5
2024-07-23 CVE-2024-41012 Use After Free vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: filelock: Remove locks reliably when fcntl/close race is detected When fcntl_setlk() races with close(), it removes the created lock with do_lock_file_wait(). However, LSMs can allow the first do_lock_file_wait() that created the lock while denying the second do_lock_file_wait() that tries to remove the lock. Separately, posix_lock_file() could also fail to remove a lock due to GFP_KERNEL allocation failure (when splitting a range in the middle). After the bug has been triggered, use-after-free reads will occur in lock_get_status() when userspace reads /proc/locks.
local
high complexity
linux CWE-416
6.3
2024-07-16 CVE-2022-48836 Unspecified vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: Input: aiptek - properly check endpoint type Syzbot reported warning in usb_submit_urb() which is caused by wrong endpoint type.
local
low complexity
linux
5.5
2024-07-16 CVE-2022-48838 Use After Free vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: Fix use-after-free bug by not setting udc->dev.driver The syzbot fuzzer found a use-after-free bug: BUG: KASAN: use-after-free in dev_uevent+0x712/0x780 drivers/base/core.c:2320 Read of size 8 at addr ffff88802b934098 by task udevd/3689 CPU: 2 PID: 3689 Comm: udevd Not tainted 5.17.0-rc4-syzkaller-00229-g4f12b742eb2b #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.14.0-2 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_address_description.constprop.0.cold+0x8d/0x303 mm/kasan/report.c:255 __kasan_report mm/kasan/report.c:442 [inline] kasan_report.cold+0x83/0xdf mm/kasan/report.c:459 dev_uevent+0x712/0x780 drivers/base/core.c:2320 uevent_show+0x1b8/0x380 drivers/base/core.c:2391 dev_attr_show+0x4b/0x90 drivers/base/core.c:2094 Although the bug manifested in the driver core, the real cause was a race with the gadget core.
local
low complexity
linux CWE-416
5.5
2024-07-16 CVE-2022-48839 Out-of-bounds Read vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: net/packet: fix slab-out-of-bounds access in packet_recvmsg() syzbot found that when an AF_PACKET socket is using PACKET_COPY_THRESH and mmap operations, tpacket_rcv() is queueing skbs with garbage in skb->cb[], triggering a too big copy [1] Presumably, users of af_packet using mmap() already gets correct metadata from the mapped buffer, we can simply make sure to clear 12 bytes that might be copied to user space later. BUG: KASAN: stack-out-of-bounds in memcpy include/linux/fortify-string.h:225 [inline] BUG: KASAN: stack-out-of-bounds in packet_recvmsg+0x56c/0x1150 net/packet/af_packet.c:3489 Write of size 165 at addr ffffc9000385fb78 by task syz-executor233/3631 CPU: 0 PID: 3631 Comm: syz-executor233 Not tainted 5.17.0-rc7-syzkaller-02396-g0b3660695e80 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_address_description.constprop.0.cold+0xf/0x336 mm/kasan/report.c:255 __kasan_report mm/kasan/report.c:442 [inline] kasan_report.cold+0x83/0xdf mm/kasan/report.c:459 check_region_inline mm/kasan/generic.c:183 [inline] kasan_check_range+0x13d/0x180 mm/kasan/generic.c:189 memcpy+0x39/0x60 mm/kasan/shadow.c:66 memcpy include/linux/fortify-string.h:225 [inline] packet_recvmsg+0x56c/0x1150 net/packet/af_packet.c:3489 sock_recvmsg_nosec net/socket.c:948 [inline] sock_recvmsg net/socket.c:966 [inline] sock_recvmsg net/socket.c:962 [inline] ____sys_recvmsg+0x2c4/0x600 net/socket.c:2632 ___sys_recvmsg+0x127/0x200 net/socket.c:2674 __sys_recvmsg+0xe2/0x1a0 net/socket.c:2704 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7fdfd5954c29 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 41 15 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007ffcf8e71e48 EFLAGS: 00000246 ORIG_RAX: 000000000000002f RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fdfd5954c29 RDX: 0000000000000000 RSI: 0000000020000500 RDI: 0000000000000005 RBP: 0000000000000000 R08: 000000000000000d R09: 000000000000000d R10: 0000000000000000 R11: 0000000000000246 R12: 00007ffcf8e71e60 R13: 00000000000f4240 R14: 000000000000c1ff R15: 00007ffcf8e71e54 </TASK> addr ffffc9000385fb78 is located in stack of task syz-executor233/3631 at offset 32 in frame: ____sys_recvmsg+0x0/0x600 include/linux/uio.h:246 this frame has 1 object: [32, 160) 'addr' Memory state around the buggy address: ffffc9000385fa80: 00 04 f3 f3 f3 f3 f3 00 00 00 00 00 00 00 00 00 ffffc9000385fb00: 00 00 00 00 00 00 00 00 00 00 00 f1 f1 f1 f1 00 >ffffc9000385fb80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 f3 ^ ffffc9000385fc00: f3 f3 f3 00 00 00 00 00 00 00 00 00 00 00 00 f1 ffffc9000385fc80: f1 f1 f1 00 f2 f2 f2 00 f2 f2 f2 00 00 00 00 00 ==================================================================
local
low complexity
linux CWE-125
5.5