Vulnerabilities > Linux > Linux Kernel > 3.18.47

DATE CVE VULNERABILITY TITLE RISK
2024-10-21 CVE-2024-49994 Integer Overflow or Wraparound vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: block: fix integer overflow in BLKSECDISCARD I independently rediscovered commit 22d24a544b0d49bbcbd61c8c0eaf77d3c9297155 block: fix overflow in blk_ioctl_discard() but for secure erase. Same problem: uint64_t r[2] = {512, 18446744073709551104ULL}; ioctl(fd, BLKSECDISCARD, r); will enter near infinite loop inside blkdev_issue_secure_erase(): a.out: attempt to access beyond end of device loop0: rw=5, sector=3399043073, nr_sectors = 1024 limit=2048 bio_check_eod: 3286214 callbacks suppressed
local
low complexity
linux CWE-190
5.5
2024-10-21 CVE-2024-49995 Unspecified vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: tipc: guard against string buffer overrun Smatch reports that copying media_name and if_name to name_parts may overwrite the destination. .../bearer.c:166 bearer_name_validate() error: strcpy() 'media_name' too large for 'name_parts->media_name' (32 vs 16) .../bearer.c:167 bearer_name_validate() error: strcpy() 'if_name' too large for 'name_parts->if_name' (1010102 vs 16) This does seem to be the case so guard against this possibility by using strscpy() and failing if truncation occurs. Introduced by commit b97bf3fd8f6a ("[TIPC] Initial merge") Compile tested only.
local
low complexity
linux
7.8
2024-10-21 CVE-2024-49997 Improper Cross-boundary Removal of Sensitive Data vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: net: ethernet: lantiq_etop: fix memory disclosure When applying padding, the buffer is not zeroed, which results in memory disclosure.
network
low complexity
linux CWE-212
7.5
2024-10-21 CVE-2024-47723 Out-of-bounds Read vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: jfs: fix out-of-bounds in dbNextAG() and diAlloc() In dbNextAG() , there is no check for the case where bmp->db_numag is greater or same than MAXAG due to a polluted image, which causes an out-of-bounds.
local
low complexity
linux CWE-125
7.1
2024-10-21 CVE-2024-47726 Unspecified vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to wait dio completion It should wait all existing dio write IOs before block removal, otherwise, previous direct write IO may overwrite data in the block which may be reused by other inode.
network
low complexity
linux
6.5
2024-10-21 CVE-2024-47737 NULL Pointer Dereference vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: nfsd: call cache_put if xdr_reserve_space returns NULL If not enough buffer space available, but idmap_lookup has triggered lookup_fn which calls cache_get and returns successfully.
local
low complexity
linux CWE-476
5.5
2024-10-21 CVE-2024-47742 Path Traversal vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: firmware_loader: Block path traversal Most firmware names are hardcoded strings, or are constructed from fairly constrained format strings where the dynamic parts are just some hex numbers or such. However, there are a couple codepaths in the kernel where firmware file names contain string components that are passed through from a device or semi-privileged userspace; the ones I could find (not counting interfaces that require root privileges) are: - lpfc_sli4_request_firmware_update() seems to construct the firmware filename from "ModelName", a string that was previously parsed out of some descriptor ("Vital Product Data") in lpfc_fill_vpd() - nfp_net_fw_find() seems to construct a firmware filename from a model name coming from nfp_hwinfo_lookup(pf->hwinfo, "nffw.partno"), which I think parses some descriptor that was read from the device. (But this case likely isn't exploitable because the format string looks like "netronome/nic_%s", and there shouldn't be any *folders* starting with "netronome/nic_".
local
low complexity
linux CWE-22
7.8
2024-10-21 CVE-2024-47745 Always-Incorrect Control Flow Implementation vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: mm: call the security_mmap_file() LSM hook in remap_file_pages() The remap_file_pages syscall handler calls do_mmap() directly, which doesn't contain the LSM security check.
local
low complexity
linux CWE-670
7.8
2024-10-21 CVE-2024-47749 NULL Pointer Dereference vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: RDMA/cxgb4: Added NULL check for lookup_atid The lookup_atid() function can return NULL if the ATID is invalid or does not exist in the identifier table, which could lead to dereferencing a null pointer without a check in the `act_establish()` and `act_open_rpl()` functions. Add a NULL check to prevent null pointer dereferencing. Found by Linux Verification Center (linuxtesting.org) with SVACE.
local
low complexity
linux CWE-476
5.5
2024-10-21 CVE-2024-47757 Out-of-bounds Read vulnerability in Linux Kernel
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix potential oob read in nilfs_btree_check_delete() The function nilfs_btree_check_delete(), which checks whether degeneration to direct mapping occurs before deleting a b-tree entry, causes memory access outside the block buffer when retrieving the maximum key if the root node has no entries. This does not usually happen because b-tree mappings with 0 child nodes are never created by mkfs.nilfs2 or nilfs2 itself.
local
low complexity
linux CWE-125
7.1