Vulnerabilities > CVE-2024-49866 - Race Condition vulnerability in Linux Kernel
Summary
In the Linux kernel, the following vulnerability has been resolved: tracing/timerlat: Fix a race during cpuhp processing There is another found exception that the "timerlat/1" thread was scheduled on CPU0, and lead to timer corruption finally: ``` ODEBUG: init active (active state 0) object: ffff888237c2e108 object type: hrtimer hint: timerlat_irq+0x0/0x220 WARNING: CPU: 0 PID: 426 at lib/debugobjects.c:518 debug_print_object+0x7d/0xb0 Modules linked in: CPU: 0 UID: 0 PID: 426 Comm: timerlat/1 Not tainted 6.11.0-rc7+ #45 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 RIP: 0010:debug_print_object+0x7d/0xb0 ... Call Trace: <TASK> ? __warn+0x7c/0x110 ? debug_print_object+0x7d/0xb0 ? report_bug+0xf1/0x1d0 ? prb_read_valid+0x17/0x20 ? handle_bug+0x3f/0x70 ? exc_invalid_op+0x13/0x60 ? asm_exc_invalid_op+0x16/0x20 ? debug_print_object+0x7d/0xb0 ? debug_print_object+0x7d/0xb0 ? __pfx_timerlat_irq+0x10/0x10 __debug_object_init+0x110/0x150 hrtimer_init+0x1d/0x60 timerlat_main+0xab/0x2d0 ? __pfx_timerlat_main+0x10/0x10 kthread+0xb7/0xe0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x2d/0x40 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> ``` After tracing the scheduling event, it was discovered that the migration of the "timerlat/1" thread was performed during thread creation. Further analysis confirmed that it is because the CPU online processing for osnoise is implemented through workers, which is asynchronous with the offline processing. When the worker was scheduled to create a thread, the CPU may has already been removed from the cpu_online_mask during the offline process, resulting in the inability to select the right CPU: T1 | T2 [CPUHP_ONLINE] | cpu_device_down() osnoise_hotplug_workfn() | | cpus_write_lock() | takedown_cpu(1) | cpus_write_unlock() [CPUHP_OFFLINE] | cpus_read_lock() | start_kthread(1) | cpus_read_unlock() | To fix this, skip online processing if the CPU is already offline.
Vulnerable Configurations
Common Weakness Enumeration (CWE)
Common Attack Pattern Enumeration and Classification (CAPEC)
- Leveraging Race Conditions This attack targets a race condition occurring when multiple processes access and manipulate the same resource concurrently and the outcome of the execution depends on the particular order in which the access takes place. The attacker can leverage a race condition by "running the race", modifying the resource and modifying the normal execution flow. For instance a race condition can occur while accessing a file, the attacker can trick the system by replacing the original file with his version and cause the system to read the malicious file.
- Leveraging Time-of-Check and Time-of-Use (TOCTOU) Race Conditions This attack targets a race condition occurring between the time of check (state) for a resource and the time of use of a resource. The typical example is the file access. The attacker can leverage a file access race condition by "running the race", meaning that he would modify the resource between the first time the target program accesses the file and the time the target program uses the file. During that period of time, the attacker could do something such as replace the file and cause an escalation of privilege.
References
- https://git.kernel.org/stable/c/322920b53dc11f9c2b33397eb3ae5bc6a175b60d
- https://git.kernel.org/stable/c/ce25f33ba89d6eefef64157655d318444580fa14
- https://git.kernel.org/stable/c/a6e9849063a6c8f4cb2f652a437e44e3ed24356c
- https://git.kernel.org/stable/c/a0d9c0cd5856191e095cf43a2e141b73945b7716
- https://git.kernel.org/stable/c/f72b451dc75578f644a3019c1489e9ae2c14e6c4
- https://git.kernel.org/stable/c/829e0c9f0855f26b3ae830d17b24aec103f7e915