Vulnerabilities > CVE-2024-47679 - Race Condition vulnerability in Linux Kernel
Summary
In the Linux kernel, the following vulnerability has been resolved: vfs: fix race between evice_inodes() and find_inode()&iput() Hi, all Recently I noticed a bug[1] in btrfs, after digged it into and I believe it'a race in vfs. Let's assume there's a inode (ie ino 261) with i_count 1 is called by iput(), and there's a concurrent thread calling generic_shutdown_super(). cpu0: cpu1: iput() // i_count is 1 ->spin_lock(inode) ->dec i_count to 0 ->iput_final() generic_shutdown_super() ->__inode_add_lru() ->evict_inodes() // cause some reason[2] ->if (atomic_read(inode->i_count)) continue; // return before // inode 261 passed the above check // list_lru_add_obj() // and then schedule out ->spin_unlock() // note here: the inode 261 // was still at sb list and hash list, // and I_FREEING|I_WILL_FREE was not been set btrfs_iget() // after some function calls ->find_inode() // found the above inode 261 ->spin_lock(inode) // check I_FREEING|I_WILL_FREE // and passed ->__iget() ->spin_unlock(inode) // schedule back ->spin_lock(inode) // check (I_NEW|I_FREEING|I_WILL_FREE) flags, // passed and set I_FREEING iput() ->spin_unlock(inode) ->spin_lock(inode) ->evict() // dec i_count to 0 ->iput_final() ->spin_unlock() ->evict() Now, we have two threads simultaneously evicting the same inode, which may trigger the BUG(inode->i_state & I_CLEAR) statement both within clear_inode() and iput(). To fix the bug, recheck the inode->i_count after holding i_lock. Because in the most scenarios, the first check is valid, and the overhead of spin_lock() can be reduced. If there is any misunderstanding, please let me know, thanks. [1]: https://lore.kernel.org/linux-btrfs/[email protected]/ [2]: The reason might be 1. SB_ACTIVE was removed or 2. mapping_shrinkable() return false when I reproduced the bug.
Vulnerable Configurations
Common Weakness Enumeration (CWE)
Common Attack Pattern Enumeration and Classification (CAPEC)
- Leveraging Race Conditions This attack targets a race condition occurring when multiple processes access and manipulate the same resource concurrently and the outcome of the execution depends on the particular order in which the access takes place. The attacker can leverage a race condition by "running the race", modifying the resource and modifying the normal execution flow. For instance a race condition can occur while accessing a file, the attacker can trick the system by replacing the original file with his version and cause the system to read the malicious file.
- Leveraging Time-of-Check and Time-of-Use (TOCTOU) Race Conditions This attack targets a race condition occurring between the time of check (state) for a resource and the time of use of a resource. The typical example is the file access. The attacker can leverage a file access race condition by "running the race", meaning that he would modify the resource between the first time the target program accesses the file and the time the target program uses the file. During that period of time, the attacker could do something such as replace the file and cause an escalation of privilege.
References
- https://git.kernel.org/stable/c/47a68c75052a660e4c37de41e321582ec9496195
- https://git.kernel.org/stable/c/3721a69403291e2514d13a7c3af50a006ea1153b
- https://git.kernel.org/stable/c/540fb13120c9eab3ef203f90c00c8e69f37449d1
- https://git.kernel.org/stable/c/0eed942bc65de1f93eca7bda51344290f9c573bb
- https://git.kernel.org/stable/c/0f8a5b6d0dafa4f533ac82e98f8b812073a7c9d1
- https://git.kernel.org/stable/c/6c857fb12b9137fee574443385d53914356bbe11
- https://git.kernel.org/stable/c/88b1afbf0f6b221f6c5bb66cc80cd3b38d696687
- https://git.kernel.org/stable/c/6cc13a80a26e6b48f78c725c01b91987d61563ef
- https://git.kernel.org/stable/c/489faddb1ae75b0e1a741fe5ca2542a2b5e794a5