Vulnerabilities > CVE-2024-27295 - Use of Incorrectly-Resolved Name or Reference vulnerability in Monospace Directus

047910
CVSS 8.2 - HIGH
Attack vector
NETWORK
Attack complexity
LOW
Privileges required
NONE
Confidentiality impact
HIGH
Integrity impact
LOW
Availability impact
NONE
network
low complexity
monospace
CWE-706

Summary

Directus is a real-time API and App dashboard for managing SQL database content. The password reset mechanism of the Directus backend allows attackers to receive a password reset email of a victim user, specifically having it arrive at a similar email address as the victim with a one or more characters changed to use accents. This is due to the fact that by default MySQL/MariaDB are configured for accent-insensitive and case-insensitive comparisons. This vulnerability is fixed in version 10.8.3.

Vulnerable Configurations

Part Description Count
Application
Monospace
316

Common Attack Pattern Enumeration and Classification (CAPEC)

  • Leveraging/Manipulating Configuration File Search Paths
    This attack loads a malicious resource into a program's standard path used to bootstrap and/or provide contextual information for a program like a path variable or classpath. J2EE applications and other component based applications that are built from multiple binaries can have very long list of dependencies to execute. If one of these libraries and/or references is controllable by the attacker then application controls can be circumvented by the attacker. A standard UNIX path looks similar to this If the attacker modifies the path variable to point to a locale that includes malicious resources then the user unwittingly can execute commands on the attackers' behalf: This is a form of usurping control of the program and the attack can be done on the classpath, database resources, or any other resources built from compound parts. At runtime detection and blocking of this attack is nearly impossible, because the configuration allows execution.
  • DLL Search Order Hijacking
    The attacker exploits the functionality of the Windows DLL loader where the process loading the DLL searches for the DLL to be loaded first in the same directory in which the process binary resides and then in other directories (e.g., System32). Exploitation of this preferential search order can allow an attacker to make the loading process load the attackers' rogue DLL rather than the legitimate DLL. For instance, an attacker with access to the file system may place a malicious ntshrui.dll in the C:\Windows directory. This DLL normally resides in the System32 folder. Process explorer.exe which also resides in C:\Windows, upon trying to load the ntshrui.dll from the System32 folder will actually load the DLL supplied by the attacker simply because of the preferential search order. Since the attacker has placed its malicious ntshrui.dll in the same directory as the loading explorer.exe process, the DLL supplied by the attacker will be found first and thus loaded in lieu of the legitimate DLL. Since explorer.exe is loaded during the boot cycle, the attackers' malware is guaranteed to execute. This attack can be leveraged with many different DLLs and with many different loading processes. No forensic trails are left in the system's registry or file system that an incorrect DLL had been loaded.
  • Passing Local Filenames to Functions That Expect a URL
    This attack relies on client side code to access local files and resources instead of URLs. When the client browser is expecting a URL string, but instead receives a request for a local file, that execution is likely to occur in the browser process space with the browser's authority to local files. The attacker can send the results of this request to the local files out to a site that they control. This attack may be used to steal sensitive authentication data (either local or remote), or to gain system profile information to launch further attacks.