Vulnerabilities > CVE-2023-41037 - Improper Verification of Cryptographic Signature vulnerability in Openpgpjs

047910
CVSS 4.3 - MEDIUM
Attack vector
NETWORK
Attack complexity
LOW
Privileges required
NONE
Confidentiality impact
NONE
Integrity impact
LOW
Availability impact
NONE
network
low complexity
openpgpjs
CWE-347

Summary

OpenPGP.js is a JavaScript implementation of the OpenPGP protocol. In affected versions OpenPGP Cleartext Signed Messages are cryptographically signed messages where the signed text is readable without special tools. These messages typically contain a "Hash: ..." header declaring the hash algorithm used to compute the signature digest. OpenPGP.js up to v5.9.0 ignored any data preceding the "Hash: ..." texts when verifying the signature. As a result, malicious parties could add arbitrary text to a third-party Cleartext Signed Message, to lead the victim to believe that the arbitrary text was signed. A user or application is vulnerable to said attack vector if it verifies the CleartextMessage by only checking the returned `verified` property, discarding the associated `data` information, and instead _visually trusting_ the contents of the original message. Since `verificationResult.data` would always contain the actual signed data, users and apps that check this information are not vulnerable. Similarly, given a CleartextMessage object, retrieving the data using `getText()` or the `text` field returns only the contents that are considered when verifying the signature. Finally, re-armoring a CleartextMessage object (using `armor()` will also result in a "sanitised" version, with the extraneous text being removed. This issue has been addressed in version 5.10.1 (current stable version) which will reject messages when calling `openpgp.readCleartextMessage()` and in version 4.10.11 (legacy version) which will will reject messages when calling `openpgp.cleartext.readArmored()`. Users are advised to upgrade. Users unable to upgrade should check the contents of `verificationResult.data` to see what data was actually signed, rather than visually trusting the contents of the armored message.

Vulnerable Configurations

Part Description Count
Application
Openpgpjs
125

Common Attack Pattern Enumeration and Classification (CAPEC)

  • Padding Oracle Crypto Attack
    An attacker is able to efficiently decrypt data without knowing the decryption key if a target system leaks data on whether or not a padding error happened while decrypting the ciphertext. A target system that leaks this type of information becomes the padding oracle and an attacker is able to make use of that oracle to efficiently decrypt data without knowing the decryption key by issuing on average 128*b calls to the padding oracle (where b is the number of bytes in the ciphertext block). In addition to performing decryption, an attacker is also able to produce valid ciphertexts (i.e., perform encryption) by using the padding oracle, all without knowing the encryption key. Any cryptosystem can be vulnerable to padding oracle attacks if the encrypted messages are not authenticated to ensure their validity prior to decryption, and then the information about padding error is leaked to the attacker. This attack technique may be used, for instance, to break CAPTCHA systems or decrypt/modify state information stored in client side objects (e.g., hidden fields or cookies). This attack technique is a side-channel attack on the cryptosystem that uses a data leak from an improperly implemented decryption routine to completely subvert the cryptosystem. The one bit of information that tells the attacker whether a padding error during decryption has occurred, in whatever form it comes, is sufficient for the attacker to break the cryptosystem. That bit of information can come in a form of an explicit error message about a padding error, a returned blank page, or even the server taking longer to respond (a timing attack). This attack can be launched cross domain where an attacker is able to use cross-domain information leaks to get the bits of information from the padding oracle from a target system / service with which the victim is communicating. To do so an attacker sends a request containing ciphertext to the target system. Due to the browser's same origin policy, the attacker is not able to see the response directly, but can use cross-domain information leak techniques to still get the information needed (i.e., information on whether or not a padding error has occurred). For instance, this can be done using "img" tag plus the onerror()/onload() events. The attacker's JavaScript can make web browsers to load an image on the target site, and know if the image is loaded or not. This is 1-bit information needed for the padding oracle attack to work: if the image is loaded, then it is valid padding, otherwise it is not.