Vulnerabilities > CVE-2022-49446 - Improper Locking vulnerability in Linux Kernel
Summary
In the Linux kernel, the following vulnerability has been resolved: nvdimm: Fix firmware activation deadlock scenarios Lockdep reports the following deadlock scenarios for CXL root device power-management, device_prepare(), operations, and device_shutdown() operations for 'nd_region' devices: Chain exists of: &nvdimm_region_key --> &nvdimm_bus->reconfig_mutex --> system_transition_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(system_transition_mutex); lock(&nvdimm_bus->reconfig_mutex); lock(system_transition_mutex); lock(&nvdimm_region_key); Chain exists of: &cxl_nvdimm_bridge_key --> acpi_scan_lock --> &cxl_root_key Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&cxl_root_key); lock(acpi_scan_lock); lock(&cxl_root_key); lock(&cxl_nvdimm_bridge_key); These stem from holding nvdimm_bus_lock() over hibernate_quiet_exec() which walks the entire system device topology taking device_lock() along the way. The nvdimm_bus_lock() is protecting against unregistration, multiple simultaneous ops callers, and preventing activate_show() from racing activate_store(). For the first 2, the lock is redundant. Unregistration already flushes all ops users, and sysfs already prevents multiple threads to be active in an ops handler at the same time. For the last userspace should already be waiting for its last activate_store() to complete, and does not need activate_show() to flush the write side, so this lock usage can be deleted in these attributes.
Vulnerable Configurations
Common Weakness Enumeration (CWE)
Common Attack Pattern Enumeration and Classification (CAPEC)
- Leveraging Race Conditions This attack targets a race condition occurring when multiple processes access and manipulate the same resource concurrently and the outcome of the execution depends on the particular order in which the access takes place. The attacker can leverage a race condition by "running the race", modifying the resource and modifying the normal execution flow. For instance a race condition can occur while accessing a file, the attacker can trick the system by replacing the original file with his version and cause the system to read the malicious file.
- Leveraging Race Conditions via Symbolic Links This attack leverages the use of symbolic links (Symlinks) in order to write to sensitive files. An attacker can create a Symlink link to a target file not otherwise accessible to her. When the privileged program tries to create a temporary file with the same name as the Symlink link, it will actually write to the target file pointed to by the attackers' Symlink link. If the attacker can insert malicious content in the temporary file she will be writing to the sensitive file by using the Symlink. The race occurs because the system checks if the temporary file exists, then creates the file. The attacker would typically create the Symlink during the interval between the check and the creation of the temporary file.
References
- https://git.kernel.org/stable/c/2f97ebc58d5fc83ca1528cd553fa725472ab3ca8
- https://git.kernel.org/stable/c/2fd853fdb40afc052de338693df1372f2ead7be7
- https://git.kernel.org/stable/c/641649f31e20df630310f5c22f26c071acc676d4
- https://git.kernel.org/stable/c/ceb924ee16b2c8e48dcac3d9ad6be01c40b5a228
- https://git.kernel.org/stable/c/e6829d1bd3c4b58296ee9e412f7ed4d6cb390192