Vulnerabilities > CVE-2022-31085 - Insufficiently Protected Credentials vulnerability in multiple products
Attack vector
NETWORK Attack complexity
LOW Privileges required
NONE Confidentiality impact
LOW Integrity impact
LOW Availability impact
NONE Summary
LDAP Account Manager (LAM) is a webfrontend for managing entries (e.g. users, groups, DHCP settings) stored in an LDAP directory. In versions prior to 8.0 the session files include the LDAP user name and password in clear text if the PHP OpenSSL extension is not installed or encryption is disabled by configuration. This issue has been fixed in version 8.0. Users unable to upgrade should install the PHP OpenSSL extension and make sure session encryption is enabled in LAM main configuration.
Vulnerable Configurations
Part | Description | Count |
---|---|---|
Application | 1 | |
OS | 1 |
Common Weakness Enumeration (CWE)
Common Attack Pattern Enumeration and Classification (CAPEC)
- Session Sidejacking Session sidejacking takes advantage of an unencrypted communication channel between a victim and target system. The attacker sniffs traffic on a network looking for session tokens in unencrypted traffic. Once a session token is captured, the attacker performs malicious actions by using the stolen token with the targeted application to impersonate the victim. This attack is a specific method of session hijacking, which is exploiting a valid session token to gain unauthorized access to a target system or information. Other methods to perform a session hijacking are session fixation, cross-site scripting, or compromising a user or server machine and stealing the session token.
- Lifting credential(s)/key material embedded in client distributions (thick or thin) An attacker examines a target application's code or configuration files to find credential or key material that has been embedded within the application or its files. Many services require authentication with their users for the various purposes including billing, access control or attribution. Some client applications store the user's authentication credentials or keys to accelerate the login process. Some clients may have built-in keys or credentials (in which case the server is authenticating with the client, rather than the user). If the attacker is able to locate where this information is stored, they may be able to retrieve these credentials. The attacker could then use these stolen credentials to impersonate the user or client, respectively, in interactions with the service or use stolen keys to eavesdrop on nominally secure communications between the client and server.
- Password Recovery Exploitation An attacker may take advantage of the application feature to help users recover their forgotten passwords in order to gain access into the system with the same privileges as the original user. Generally password recovery schemes tend to be weak and insecure. Most of them use only one security question . For instance, mother's maiden name tends to be a fairly popular one. Unfortunately in many cases this information is not very hard to find, especially if the attacker knows the legitimate user. These generic security questions are also re-used across many applications, thus making them even more insecure. An attacker could for instance overhear a coworker talking to a bank representative at the work place and supplying their mother's maiden name for verification purposes. An attacker can then try to log in into one of the victim's accounts, click on "forgot password" and there is a good chance that the security question there will be to provide mother's maiden name. A weak password recovery scheme totally undermines the effectiveness of a strong password scheme.
References
- https://github.com/LDAPAccountManager/lam/commit/f1d5d04952f39a1b4ea203d3964fa88e1429dfd4
- https://github.com/LDAPAccountManager/lam/commit/f1d5d04952f39a1b4ea203d3964fa88e1429dfd4
- https://github.com/LDAPAccountManager/lam/security/advisories/GHSA-6m3q-5c84-6h6j
- https://github.com/LDAPAccountManager/lam/security/advisories/GHSA-6m3q-5c84-6h6j
- https://www.debian.org/security/2022/dsa-5177
- https://www.debian.org/security/2022/dsa-5177