Vulnerabilities > CVE-2022-23649 - Improper Certificate Validation vulnerability in Sigstore Cosign

047910
CVSS 2.1 - LOW
Attack vector
LOCAL
Attack complexity
LOW
Privileges required
NONE
Confidentiality impact
NONE
Integrity impact
PARTIAL
Availability impact
NONE
local
low complexity
sigstore
CWE-295

Summary

Cosign provides container signing, verification, and storage in an OCI registry for the sigstore project. Prior to version 1.5.2, Cosign can be manipulated to claim that an entry for a signature exists in the Rekor transparency log even if it doesn't. This requires the attacker to have pull and push permissions for the signature in OCI. This can happen with both standard signing with a keypair and "keyless signing" with Fulcio. If an attacker has access to the signature in OCI, they can manipulate cosign into believing the entry was stored in Rekor even though it wasn't. The vulnerability has been patched in v1.5.2 of Cosign. The `signature` in the `signedEntryTimestamp` provided by Rekor is now compared to the `signature` that is being verified. If these don't match, then an error is returned. If a valid bundle is copied to a different signature, verification should fail. Cosign output now only informs the user that certificates were verified if a certificate was in fact verified. There is currently no known workaround.

Vulnerable Configurations

Part Description Count
Application
Sigstore
1

Common Weakness Enumeration (CWE)

Common Attack Pattern Enumeration and Classification (CAPEC)

  • Creating a Rogue Certificate Authority Certificate
    An attacker exploits a weakness in the MD5 hash algorithm (weak collision resistance) to generate a certificate signing request (CSR) that contains collision blocks in the "to be signed" part. The attacker specially crafts two different, but valid X.509 certificates that when hashed with the MD5 algorithm would yield the same value. The attacker then sends the CSR for one of the certificates to the Certification Authority which uses the MD5 hashing algorithm. That request is completely valid and the Certificate Authority issues an X.509 certificate to the attacker which is signed with its private key. An attacker then takes that signed blob and inserts it into another X.509 certificate that the attacker generated. Due to the MD5 collision, both certificates, though different, hash to the same value and so the signed blob works just as well in the second certificate. The net effect is that the attackers' second X.509 certificate, which the Certification Authority has never seen, is now signed and validated by that Certification Authority. To make the attack more interesting, the second certificate could be not just a regular certificate, but rather itself a signing certificate. Thus the attacker is able to start their own Certification Authority that is anchored in its root of trust in the legitimate Certification Authority that has signed the attackers' first X.509 certificate. If the original Certificate Authority was accepted by default by browsers, so will now the Certificate Authority set up by the attacker and of course any certificates that it signs. So the attacker is now able to generate any SSL certificates to impersonate any web server, and the user's browser will not issue any warning to the victim. This can be used to compromise HTTPS communications and other types of systems where PKI and X.509 certificates may be used (e.g., VPN, IPSec) .