Vulnerabilities > CVE-2022-21728 - Out-of-bounds Read vulnerability in Google Tensorflow
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of shape inference for `ReverseSequence` does not fully validate the value of `batch_dim` and can result in a heap OOB read. There is a check to make sure the value of `batch_dim` does not go over the rank of the input, but there is no check for negative values. Negative dimensions are allowed in some cases to mimic Python's negative indexing (i.e., indexing from the end of the array), however if the value is too negative then the implementation of `Dim` would access elements before the start of an array. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Vulnerable Configurations
Common Weakness Enumeration (CWE)
Common Attack Pattern Enumeration and Classification (CAPEC)
- Overread Buffers An adversary attacks a target by providing input that causes an application to read beyond the boundary of a defined buffer. This typically occurs when a value influencing where to start or stop reading is set to reflect positions outside of the valid memory location of the buffer. This type of attack may result in exposure of sensitive information, a system crash, or arbitrary code execution.
References
- https://github.com/tensorflow/tensorflow/commit/37c01fb5e25c3d80213060460196406c43d31995
- https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L1636-L1671
- https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/framework/shape_inference.h#L415-L428
- https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6gmv-pjp9-p8w8