Vulnerabilities > CVE-2021-41195 - Integer Overflow or Wraparound vulnerability in Google Tensorflow

047910
CVSS 5.5 - MEDIUM
Attack vector
LOCAL
Attack complexity
LOW
Privileges required
LOW
Confidentiality impact
NONE
Integrity impact
NONE
Availability impact
HIGH
local
low complexity
google
CWE-190

Summary

TensorFlow is an open source platform for machine learning. In affected versions the implementation of `tf.math.segment_*` operations results in a `CHECK`-fail related abort (and denial of service) if a segment id in `segment_ids` is large. This is similar to CVE-2021-29584 (and similar other reported vulnerabilities in TensorFlow, localized to specific APIs): the implementation (both on CPU and GPU) computes the output shape using `AddDim`. However, if the number of elements in the tensor overflows an `int64_t` value, `AddDim` results in a `CHECK` failure which provokes a `std::abort`. Instead, code should use `AddDimWithStatus`. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.

Vulnerable Configurations

Part Description Count
Application
Google
398

Common Weakness Enumeration (CWE)

Common Attack Pattern Enumeration and Classification (CAPEC)

  • Forced Integer Overflow
    This attack forces an integer variable to go out of range. The integer variable is often used as an offset such as size of memory allocation or similarly. The attacker would typically control the value of such variable and try to get it out of range. For instance the integer in question is incremented past the maximum possible value, it may wrap to become a very small, or negative number, therefore providing a very incorrect value which can lead to unexpected behavior. At worst the attacker can execute arbitrary code.