Vulnerabilities > CVE-2021-39159 - Code Injection vulnerability in Jupyter Binderhub

047910
CVSS 7.5 - HIGH
Attack vector
NETWORK
Attack complexity
LOW
Privileges required
NONE
Confidentiality impact
PARTIAL
Integrity impact
PARTIAL
Availability impact
PARTIAL
network
low complexity
jupyter
CWE-94

Summary

BinderHub is a kubernetes-based cloud service that allows users to share reproducible interactive computing environments from code repositories. In affected versions a remote code execution vulnerability has been identified in BinderHub, where providing BinderHub with maliciously crafted input could execute code in the BinderHub context, with the potential to egress credentials of the BinderHub deployment, including JupyterHub API tokens, kubernetes service accounts, and docker registry credentials. This may provide the ability to manipulate images and other user created pods in the deployment, with the potential to escalate to the host depending on the underlying kubernetes configuration. Users are advised to update to version 0.2.0-n653. If users are unable to update they may disable the git repo provider by specifying the `BinderHub.repo_providers` as a workaround.

Vulnerable Configurations

Part Description Count
Application
Jupyter
1

Common Attack Pattern Enumeration and Classification (CAPEC)

  • Leverage Executable Code in Non-Executable Files
    An attack of this type exploits a system's trust in configuration and resource files, when the executable loads the resource (such as an image file or configuration file) the attacker has modified the file to either execute malicious code directly or manipulate the target process (e.g. application server) to execute based on the malicious configuration parameters. Since systems are increasingly interrelated mashing up resources from local and remote sources the possibility of this attack occurring is high. The attack can be directed at a client system, such as causing buffer overrun through loading seemingly benign image files, as in Microsoft Security Bulletin MS04-028 where specially crafted JPEG files could cause a buffer overrun once loaded into the browser. Another example targets clients reading pdf files. In this case the attacker simply appends javascript to the end of a legitimate url for a pdf (http://www.gnucitizen.org/blog/danger-danger-danger/) http://path/to/pdf/file.pdf#whatever_name_you_want=javascript:your_code_here The client assumes that they are reading a pdf, but the attacker has modified the resource and loaded executable javascript into the client's browser process. The attack can also target server processes. The attacker edits the resource or configuration file, for example a web.xml file used to configure security permissions for a J2EE app server, adding role name "public" grants all users with the public role the ability to use the administration functionality. The server trusts its configuration file to be correct, but when they are manipulated, the attacker gains full control.
  • Manipulating User-Controlled Variables
    This attack targets user controlled variables (DEBUG=1, PHP Globals, and So Forth). An attacker can override environment variables leveraging user-supplied, untrusted query variables directly used on the application server without any data sanitization. In extreme cases, the attacker can change variables controlling the business logic of the application. For instance, in languages like PHP, a number of poorly set default configurations may allow the user to override variables.