Vulnerabilities > CVE-2021-31895 - Classic Buffer Overflow vulnerability in Siemens products

047910
CVSS 7.5 - HIGH
Attack vector
NETWORK
Attack complexity
LOW
Privileges required
NONE
Confidentiality impact
PARTIAL
Integrity impact
PARTIAL
Availability impact
PARTIAL
network
low complexity
siemens
CWE-120

Summary

A vulnerability has been identified in RUGGEDCOM ROS M2100 (All versions < V4.3.7), RUGGEDCOM ROS M2200 (All versions < V4.3.7), RUGGEDCOM ROS M969 (All versions < V4.3.7), RUGGEDCOM ROS RMC (All versions < V4.3.7), RUGGEDCOM ROS RMC20 (All versions < V4.3.7), RUGGEDCOM ROS RMC30 (All versions < V4.3.7), RUGGEDCOM ROS RMC40 (All versions < V4.3.7), RUGGEDCOM ROS RMC41 (All versions < V4.3.7), RUGGEDCOM ROS RMC8388 V4.X (All versions < V4.3.7), RUGGEDCOM ROS RMC8388 V5.X (All versions < V5.5.4), RUGGEDCOM ROS RP110 (All versions < V4.3.7), RUGGEDCOM ROS RS400 (All versions < V4.3.7), RUGGEDCOM ROS RS401 (All versions < V4.3.7), RUGGEDCOM ROS RS416 (All versions < V4.3.7), RUGGEDCOM ROS RS416v2 V4.X (All versions < V4.3.7), RUGGEDCOM ROS RS416v2 V5.X (All versions < 5.5.4), RUGGEDCOM ROS RS8000 (All versions < V4.3.7), RUGGEDCOM ROS RS8000A (All versions < V4.3.7), RUGGEDCOM ROS RS8000H (All versions < V4.3.7), RUGGEDCOM ROS RS8000T (All versions < V4.3.7), RUGGEDCOM ROS RS900 (32M) V4.X (All versions < V4.3.7), RUGGEDCOM ROS RS900 (32M) V5.X (All versions < V5.5.4), RUGGEDCOM ROS RS900G (All versions < V4.3.7), RUGGEDCOM ROS RS900G (32M) V4.X (All versions < V4.3.7), RUGGEDCOM ROS RS900G (32M) V5.X (All versions < V5.5.4), RUGGEDCOM ROS RS900GP (All versions < V4.3.7), RUGGEDCOM ROS RS900L (All versions < V4.3.7), RUGGEDCOM ROS RS900W (All versions < V4.3.7), RUGGEDCOM ROS RS910 (All versions < V4.3.7), RUGGEDCOM ROS RS910L (All versions < V4.3.7), RUGGEDCOM ROS RS910W (All versions < V4.3.7), RUGGEDCOM ROS RS920L (All versions < V4.3.7), RUGGEDCOM ROS RS920W (All versions < V4.3.7), RUGGEDCOM ROS RS930L (All versions < V4.3.7), RUGGEDCOM ROS RS930W (All versions < V4.3.7), RUGGEDCOM ROS RS940G (All versions < V4.3.7), RUGGEDCOM ROS RS969 (All versions < V4.3.7), RUGGEDCOM ROS RSG2100 (32M) V4.X (All versions < V4.3.7), RUGGEDCOM ROS RSG2100 (32M) V5.X (All versions < V5.5.4), RUGGEDCOM ROS RSG2100 V4.X (All versions < V4.3.7), RUGGEDCOM ROS RSG2100P (All versions < V4.3.7), RUGGEDCOM ROS RSG2100P (32M) V4.X (All versions < V4.3.7), RUGGEDCOM ROS RSG2100P (32M) V5.X (All versions < V5.5.4), RUGGEDCOM ROS RSG2200 (All versions < V4.3.7), RUGGEDCOM ROS RSG2288 V4.X (All versions < V4.3.7), RUGGEDCOM ROS RSG2288 V5.X (All versions < V5.5.4), RUGGEDCOM ROS RSG2300 V4.X (All versions < V4.3.7), RUGGEDCOM ROS RSG2300 V5.X (All versions < V5.5.4), RUGGEDCOM ROS RSG2300P V4.X (All versions < V4.3.7), RUGGEDCOM ROS RSG2300P V5.X (All versions < V5.5.4), RUGGEDCOM ROS RSG2488 V4.X (All versions < V4.3.7), RUGGEDCOM ROS RSG2488 V5.X (All versions < V5.5.4), RUGGEDCOM ROS RSG900 V4.X (All versions < V4.3.7), RUGGEDCOM ROS RSG900 V5.X (All versions < V5.5.4), RUGGEDCOM ROS RSG900C (All versions < V5.5.4), RUGGEDCOM ROS RSG900G V4.X (All versions < V4.3.7), RUGGEDCOM ROS RSG900G V5.X (All versions < V5.5.4), RUGGEDCOM ROS RSG900R (All versions < V5.5.4), RUGGEDCOM ROS RSG920P V4.X (All versions < V4.3.7), RUGGEDCOM ROS RSG920P V5.X (All versions < V5.5.4), RUGGEDCOM ROS RSL910 (All versions < V5.5.4), RUGGEDCOM ROS RST2228 (All versions < V5.5.4), RUGGEDCOM ROS RST916C (All versions < V5.5.4), RUGGEDCOM ROS RST916P (All versions < V5.5.4), RUGGEDCOM ROS i800 (All versions < V4.3.7), RUGGEDCOM ROS i801 (All versions < V4.3.7), RUGGEDCOM ROS i802 (All versions < V4.3.7), RUGGEDCOM ROS i803 (All versions < V4.3.7). The DHCP client in affected devices fails to properly sanitize incoming DHCP packets. This could allow an unauthenticated remote attacker to cause memory to be overwritten, potentially allowing remote code execution.

Vulnerable Configurations

Part Description Count
OS
Siemens
70
Hardware
Siemens
52

Common Attack Pattern Enumeration and Classification (CAPEC)

  • Buffer Overflow via Environment Variables
    This attack pattern involves causing a buffer overflow through manipulation of environment variables. Once the attacker finds that they can modify an environment variable, they may try to overflow associated buffers. This attack leverages implicit trust often placed in environment variables.
  • Overflow Buffers
    Buffer Overflow attacks target improper or missing bounds checking on buffer operations, typically triggered by input injected by an attacker. As a consequence, an attacker is able to write past the boundaries of allocated buffer regions in memory, causing a program crash or potentially redirection of execution as per the attackers' choice.
  • Client-side Injection-induced Buffer Overflow
    This type of attack exploits a buffer overflow vulnerability in targeted client software through injection of malicious content from a custom-built hostile service.
  • Filter Failure through Buffer Overflow
    In this attack, the idea is to cause an active filter to fail by causing an oversized transaction. An attacker may try to feed overly long input strings to the program in an attempt to overwhelm the filter (by causing a buffer overflow) and hoping that the filter does not fail securely (i.e. the user input is let into the system unfiltered).
  • MIME Conversion
    An attacker exploits a weakness in the MIME conversion routine to cause a buffer overflow and gain control over the mail server machine. The MIME system is designed to allow various different information formats to be interpreted and sent via e-mail. Attack points exist when data are converted to MIME compatible format and back.