Vulnerabilities > CVE-2021-29601 - Integer Overflow or Wraparound vulnerability in Google Tensorflow

047910
CVSS 7.1 - HIGH
Attack vector
LOCAL
Attack complexity
LOW
Privileges required
LOW
Confidentiality impact
NONE
Integrity impact
HIGH
Availability impact
HIGH
local
low complexity
google
CWE-190

Summary

TensorFlow is an end-to-end open source platform for machine learning. The TFLite implementation of concatenation is vulnerable to an integer overflow issue(https://github.com/tensorflow/tensorflow/blob/7b7352a724b690b11bfaae2cd54bc3907daf6285/tensorflow/lite/kernels/concatenation.cc#L70-L76). An attacker can craft a model such that the dimensions of one of the concatenation input overflow the values of `int`. TFLite uses `int` to represent tensor dimensions, whereas TF uses `int64`. Hence, valid TF models can trigger an integer overflow when converted to TFLite format. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.

Vulnerable Configurations

Part Description Count
Application
Google
385

Common Weakness Enumeration (CWE)

Common Attack Pattern Enumeration and Classification (CAPEC)

  • Forced Integer Overflow
    This attack forces an integer variable to go out of range. The integer variable is often used as an offset such as size of memory allocation or similarly. The attacker would typically control the value of such variable and try to get it out of range. For instance the integer in question is incremented past the maximum possible value, it may wrap to become a very small, or negative number, therefore providing a very incorrect value which can lead to unexpected behavior. At worst the attacker can execute arbitrary code.