Vulnerabilities > CVE-2021-29590 - Out-of-bounds Read vulnerability in Google Tensorflow
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementations of the `Minimum` and `Maximum` TFLite operators can be used to read data outside of bounds of heap allocated objects, if any of the two input tensor arguments are empty. This is because the broadcasting implementation(https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/internal/reference/maximum_minimum.h#L52-L56) indexes in both tensors with the same index but does not validate that the index is within bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Vulnerable Configurations
Common Weakness Enumeration (CWE)
Common Attack Pattern Enumeration and Classification (CAPEC)
- Overread Buffers An adversary attacks a target by providing input that causes an application to read beyond the boundary of a defined buffer. This typically occurs when a value influencing where to start or stop reading is set to reflect positions outside of the valid memory location of the buffer. This type of attack may result in exposure of sensitive information, a system crash, or arbitrary code execution.