Vulnerabilities > CVE-2021-29569 - Out-of-bounds Read vulnerability in Google Tensorflow
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/ac328eaa3870491ababc147822cd04e91a790643/tensorflow/core/kernels/requantization_range_op.cc#L49-L50) assumes that the `input_min` and `input_max` tensors have at least one element, as it accesses the first element in two arrays. If the tensors are empty, `.flat<T>()` is an empty object, backed by an empty array. Hence, accesing even the 0th element is a read outside the bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Vulnerable Configurations
Common Weakness Enumeration (CWE)
Common Attack Pattern Enumeration and Classification (CAPEC)
- Overread Buffers An adversary attacks a target by providing input that causes an application to read beyond the boundary of a defined buffer. This typically occurs when a value influencing where to start or stop reading is set to reflect positions outside of the valid memory location of the buffer. This type of attack may result in exposure of sensitive information, a system crash, or arbitrary code execution.