Vulnerabilities > CVE-2020-5217 - Injection vulnerability in Twitter Secure Headers

047910
CVSS 5.0 - MEDIUM
Attack vector
NETWORK
Attack complexity
LOW
Privileges required
NONE
Confidentiality impact
NONE
Integrity impact
PARTIAL
Availability impact
NONE
network
low complexity
twitter
CWE-74

Summary

In Secure Headers (RubyGem secure_headers), a directive injection vulnerability is present in versions before 3.8.0, 5.1.0, and 6.2.0. If user-supplied input was passed into append/override_content_security_policy_directives, a semicolon could be injected leading to directive injection. This could be used to e.g. override a script-src directive. Duplicate directives are ignored and the first one wins. The directives in secure_headers are sorted alphabetically so they pretty much all come before script-src. A previously undefined directive would receive a value even if SecureHeaders::OPT_OUT was supplied. The fixed versions will silently convert the semicolons to spaces and emit a deprecation warning when this happens. This will result in innocuous browser console messages if being exploited/accidentally used. In future releases, we will raise application errors resulting in 500s. Depending on what major version you are using, the fixed versions are 6.2.0, 5.1.0, 3.8.0.

Vulnerable Configurations

Part Description Count
Application
Twitter
89

Common Attack Pattern Enumeration and Classification (CAPEC)

  • Buffer Overflow via Environment Variables
    This attack pattern involves causing a buffer overflow through manipulation of environment variables. Once the attacker finds that they can modify an environment variable, they may try to overflow associated buffers. This attack leverages implicit trust often placed in environment variables.
  • Server Side Include (SSI) Injection
    An attacker can use Server Side Include (SSI) Injection to send code to a web application that then gets executed by the web server. Doing so enables the attacker to achieve similar results to Cross Site Scripting, viz., arbitrary code execution and information disclosure, albeit on a more limited scale, since the SSI directives are nowhere near as powerful as a full-fledged scripting language. Nonetheless, the attacker can conveniently gain access to sensitive files, such as password files, and execute shell commands.
  • Cross Site Scripting through Log Files
    An attacker may leverage a system weakness where logs are susceptible to log injection to insert scripts into the system's logs. If these logs are later viewed by an administrator through a thin administrative interface and the log data is not properly HTML encoded before being written to the page, the attackers' scripts stored in the log will be executed in the administrative interface with potentially serious consequences. This attack pattern is really a combination of two other attack patterns: log injection and stored cross site scripting.
  • Command Line Execution through SQL Injection
    An attacker uses standard SQL injection methods to inject data into the command line for execution. This could be done directly through misuse of directives such as MSSQL_xp_cmdshell or indirectly through injection of data into the database that would be interpreted as shell commands. Sometime later, an unscrupulous backend application (or could be part of the functionality of the same application) fetches the injected data stored in the database and uses this data as command line arguments without performing proper validation. The malicious data escapes that data plane by spawning new commands to be executed on the host.
  • Subverting Environment Variable Values
    The attacker directly or indirectly modifies environment variables used by or controlling the target software. The attacker's goal is to cause the target software to deviate from its expected operation in a manner that benefits the attacker.