Vulnerabilities > CVE-2020-2021 - Improper Verification of Cryptographic Signature vulnerability in Paloaltonetworks Pan-Os

047910
CVSS 10.0 - CRITICAL
Attack vector
NETWORK
Attack complexity
LOW
Privileges required
NONE
Confidentiality impact
HIGH
Integrity impact
HIGH
Availability impact
HIGH
network
low complexity
paloaltonetworks
CWE-347
critical

Summary

When Security Assertion Markup Language (SAML) authentication is enabled and the 'Validate Identity Provider Certificate' option is disabled (unchecked), improper verification of signatures in PAN-OS SAML authentication enables an unauthenticated network-based attacker to access protected resources. The attacker must have network access to the vulnerable server to exploit this vulnerability. This issue affects PAN-OS 9.1 versions earlier than PAN-OS 9.1.3; PAN-OS 9.0 versions earlier than PAN-OS 9.0.9; PAN-OS 8.1 versions earlier than PAN-OS 8.1.15, and all versions of PAN-OS 8.0 (EOL). This issue does not affect PAN-OS 7.1. This issue cannot be exploited if SAML is not used for authentication. This issue cannot be exploited if the 'Validate Identity Provider Certificate' option is enabled (checked) in the SAML Identity Provider Server Profile. Resources that can be protected by SAML-based single sign-on (SSO) authentication are: GlobalProtect Gateway, GlobalProtect Portal, GlobalProtect Clientless VPN, Authentication and Captive Portal, PAN-OS next-generation firewalls (PA-Series, VM-Series) and Panorama web interfaces, Prisma Access In the case of GlobalProtect Gateways, GlobalProtect Portal, Clientless VPN, Captive Portal, and Prisma Access, an unauthenticated attacker with network access to the affected servers can gain access to protected resources if allowed by configured authentication and Security policies. There is no impact on the integrity and availability of the gateway, portal or VPN server. An attacker cannot inspect or tamper with sessions of regular users. In the worst case, this is a critical severity vulnerability with a CVSS Base Score of 10.0 (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:N). In the case of PAN-OS and Panorama web interfaces, this issue allows an unauthenticated attacker with network access to the PAN-OS or Panorama web interfaces to log in as an administrator and perform administrative actions. In the worst-case scenario, this is a critical severity vulnerability with a CVSS Base Score of 10.0 (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H). If the web interfaces are only accessible to a restricted management network, then the issue is lowered to a CVSS Base Score of 9.6 (CVSS:3.1/AV:A/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H). Palo Alto Networks is not aware of any malicious attempts to exploit this vulnerability.

Vulnerable Configurations

Part Description Count
OS
Paloaltonetworks
61

Common Attack Pattern Enumeration and Classification (CAPEC)

  • Padding Oracle Crypto Attack
    An attacker is able to efficiently decrypt data without knowing the decryption key if a target system leaks data on whether or not a padding error happened while decrypting the ciphertext. A target system that leaks this type of information becomes the padding oracle and an attacker is able to make use of that oracle to efficiently decrypt data without knowing the decryption key by issuing on average 128*b calls to the padding oracle (where b is the number of bytes in the ciphertext block). In addition to performing decryption, an attacker is also able to produce valid ciphertexts (i.e., perform encryption) by using the padding oracle, all without knowing the encryption key. Any cryptosystem can be vulnerable to padding oracle attacks if the encrypted messages are not authenticated to ensure their validity prior to decryption, and then the information about padding error is leaked to the attacker. This attack technique may be used, for instance, to break CAPTCHA systems or decrypt/modify state information stored in client side objects (e.g., hidden fields or cookies). This attack technique is a side-channel attack on the cryptosystem that uses a data leak from an improperly implemented decryption routine to completely subvert the cryptosystem. The one bit of information that tells the attacker whether a padding error during decryption has occurred, in whatever form it comes, is sufficient for the attacker to break the cryptosystem. That bit of information can come in a form of an explicit error message about a padding error, a returned blank page, or even the server taking longer to respond (a timing attack). This attack can be launched cross domain where an attacker is able to use cross-domain information leaks to get the bits of information from the padding oracle from a target system / service with which the victim is communicating. To do so an attacker sends a request containing ciphertext to the target system. Due to the browser's same origin policy, the attacker is not able to see the response directly, but can use cross-domain information leak techniques to still get the information needed (i.e., information on whether or not a padding error has occurred). For instance, this can be done using "img" tag plus the onerror()/onload() events. The attacker's JavaScript can make web browsers to load an image on the target site, and know if the image is loaded or not. This is 1-bit information needed for the padding oracle attack to work: if the image is loaded, then it is valid padding, otherwise it is not.