Vulnerabilities > CVE-2019-14763 - Improper Locking vulnerability in multiple products

047910
CVSS 4.9 - MEDIUM
Attack vector
LOCAL
Attack complexity
LOW
Privileges required
NONE
Confidentiality impact
NONE
Integrity impact
NONE
Availability impact
COMPLETE
local
low complexity
linux
canonical
CWE-667
nessus

Summary

In the Linux kernel before 4.16.4, a double-locking error in drivers/usb/dwc3/gadget.c may potentially cause a deadlock with f_hid.

Vulnerable Configurations

Part Description Count
OS
Linux
3147
OS
Canonical
2

Common Weakness Enumeration (CWE)

Common Attack Pattern Enumeration and Classification (CAPEC)

  • Leveraging Race Conditions
    This attack targets a race condition occurring when multiple processes access and manipulate the same resource concurrently and the outcome of the execution depends on the particular order in which the access takes place. The attacker can leverage a race condition by "running the race", modifying the resource and modifying the normal execution flow. For instance a race condition can occur while accessing a file, the attacker can trick the system by replacing the original file with his version and cause the system to read the malicious file.
  • Leveraging Race Conditions via Symbolic Links
    This attack leverages the use of symbolic links (Symlinks) in order to write to sensitive files. An attacker can create a Symlink link to a target file not otherwise accessible to her. When the privileged program tries to create a temporary file with the same name as the Symlink link, it will actually write to the target file pointed to by the attackers' Symlink link. If the attacker can insert malicious content in the temporary file she will be writing to the sensitive file by using the Symlink. The race occurs because the system checks if the temporary file exists, then creates the file. The attacker would typically create the Symlink during the interval between the check and the creation of the temporary file.

Nessus

  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-4118-1.NASL
    descriptionIt was discovered that the alarmtimer implementation in the Linux kernel contained an integer overflow vulnerability. A local attacker could use this to cause a denial of service. (CVE-2018-13053) Wen Xu discovered that the XFS filesystem implementation in the Linux kernel did not properly track inode validations. An attacker could use this to construct a malicious XFS image that, when mounted, could cause a denial of service (system crash). (CVE-2018-13093) Wen Xu discovered that the f2fs file system implementation in the Linux kernel did not properly validate metadata. An attacker could use this to construct a malicious f2fs image that, when mounted, could cause a denial of service (system crash). (CVE-2018-13096, CVE-2018-13097, CVE-2018-13098, CVE-2018-13099, CVE-2018-13100, CVE-2018-14614, CVE-2018-14615, CVE-2018-14616) Wen Xu and Po-Ning Tseng discovered that btrfs file system implementation in the Linux kernel did not properly validate metadata. An attacker could use this to construct a malicious btrfs image that, when mounted, could cause a denial of service (system crash). (CVE-2018-14609, CVE-2018-14610, CVE-2018-14611, CVE-2018-14612, CVE-2018-14613) Wen Xu discovered that the HFS+ filesystem implementation in the Linux kernel did not properly handle malformed catalog data in some situations. An attacker could use this to construct a malicious HFS+ image that, when mounted, could cause a denial of service (system crash). (CVE-2018-14617) Vasily Averin and Pavel Tikhomirov discovered that the cleancache subsystem of the Linux kernel did not properly initialize new files in some situations. A local attacker could use this to expose sensitive information. (CVE-2018-16862) Hui Peng and Mathias Payer discovered that the Option USB High Speed driver in the Linux kernel did not properly validate metadata received from the device. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2018-19985) Hui Peng and Mathias Payer discovered that the USB subsystem in the Linux kernel did not properly handle size checks when handling an extra USB descriptor. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2018-20169) Zhipeng Xie discovered that an infinite loop could triggered in the CFS Linux kernel process scheduler. A local attacker could possibly use this to cause a denial of service. (CVE-2018-20784) It was discovered that a use-after-free error existed in the block layer subsystem of the Linux kernel when certain failure conditions occurred. A local attacker could possibly use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-20856) Eli Biham and Lior Neumann discovered that the Bluetooth implementation in the Linux kernel did not properly validate elliptic curve parameters during Diffie-Hellman key exchange in some situations. An attacker could use this to expose sensitive information. (CVE-2018-5383) It was discovered that the Intel wifi device driver in the Linux kernel did not properly validate certain Tunneled Direct Link Setup (TDLS). A physically proximate attacker could use this to cause a denial of service (wifi disconnect). (CVE-2019-0136) It was discovered that a heap buffer overflow existed in the Marvell Wireless LAN device driver for the Linux kernel. An attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-10126) It was discovered that the Bluetooth UART implementation in the Linux kernel did not properly check for missing tty operations. A local attacker could use this to cause a denial of service. (CVE-2019-10207) Amit Klein and Benny Pinkas discovered that the Linux kernel did not sufficiently randomize IP ID values generated for connectionless networking protocols. A remote attacker could use this to track particular Linux devices. (CVE-2019-10638) Amit Klein and Benny Pinkas discovered that the location of kernel addresses could exposed by the implementation of connection-less network protocols in the Linux kernel. A remote attacker could possibly use this to assist in the exploitation of another vulnerability in the Linux kernel. (CVE-2019-10639) Adam Zabrocki discovered that the Intel i915 kernel mode graphics driver in the Linux kernel did not properly restrict mmap() ranges in some situations. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-11085) It was discovered that an integer overflow existed in the Linux kernel when reference counting pages, leading to potential use-after-free issues. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-11487) Jann Horn discovered that a race condition existed in the Linux kernel when performing core dumps. A local attacker could use this to cause a denial of service (system crash) or expose sensitive information. (CVE-2019-11599) It was discovered that a NULL pointer dereference vulnerability existed in the LSI Logic MegaRAID driver in the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-11810) It was discovered that a race condition leading to a use-after-free existed in the Reliable Datagram Sockets (RDS) protocol implementation in the Linux kernel. The RDS protocol is blacklisted by default in Ubuntu. If enabled, a local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-11815) It was discovered that the ext4 file system implementation in the Linux kernel did not properly zero out memory in some situations. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2019-11833) It was discovered that the Bluetooth Human Interface Device Protocol (HIDP) implementation in the Linux kernel did not properly verify strings were NULL terminated in certain situations. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2019-11884) It was discovered that a NULL pointer dereference vulnerabilty existed in the Near-field communication (NFC) implementation in the Linux kernel. An attacker could use this to cause a denial of service (system crash). (CVE-2019-12818) It was discovered that the MDIO bus devices subsystem in the Linux kernel improperly dropped a device reference in an error condition, leading to a use-after-free. An attacker could use this to cause a denial of service (system crash). (CVE-2019-12819) It was discovered that a NULL pointer dereference vulnerability existed in the Near-field communication (NFC) implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-12984) Jann Horn discovered a use-after-free vulnerability in the Linux kernel when accessing LDT entries in some situations. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-13233) Jann Horn discovered that the ptrace implementation in the Linux kernel did not properly record credentials in some situations. A local attacker could use this to cause a denial of service (system crash) or possibly gain administrative privileges. (CVE-2019-13272) It was discovered that the GTCO tablet input driver in the Linux kernel did not properly bounds check the initial HID report sent by the device. A physically proximate attacker could use to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-13631) It was discovered that the floppy driver in the Linux kernel did not properly validate meta data, leading to a buffer overread. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-14283) It was discovered that the floppy driver in the Linux kernel did not properly validate ioctl() calls, leading to a division-by-zero. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-14284) Tuba Yavuz discovered that a race condition existed in the DesignWare USB3 DRD Controller device driver in the Linux kernel. A physically proximate attacker could use this to cause a denial of service. (CVE-2019-14763) It was discovered that an out-of-bounds read existed in the QLogic QEDI iSCSI Initiator Driver in the Linux kernel. A local attacker could possibly use this to expose sensitive information (kernel memory). (CVE-2019-15090) It was discovered that the Raremono AM/FM/SW radio device driver in the Linux kernel did not properly allocate memory, leading to a use-after-free. A physically proximate attacker could use this to cause a denial of service or possibly execute arbitrary code. (CVE-2019-15211) It was discovered at a double-free error existed in the USB Rio 500 device driver for the Linux kernel. A physically proximate attacker could use this to cause a denial of service. (CVE-2019-15212) It was discovered that a race condition existed in the Advanced Linux Sound Architecture (ALSA) subsystem of the Linux kernel, leading to a potential use-after-free. A physically proximate attacker could use this to cause a denial of service (system crash) pro possibly execute arbitrary code. (CVE-2019-15214) It was discovered that a race condition existed in the CPiA2 video4linux device driver for the Linux kernel, leading to a use-after-free. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-15215) It was discovered that a race condition existed in the Softmac USB Prism54 device driver in the Linux kernel. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2019-15220) It was discovered that a use-after-free vulnerability existed in the Appletalk implementation in the Linux kernel if an error occurs during initialization. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-15292) It was discovered that the Empia EM28xx DVB USB device driver implementation in the Linux kernel contained a use-after-free vulnerability when disconnecting the device. An attacker could use this to cause a denial of service (system crash). (CVE-2019-2024) It was discovered that the USB video device class implementation in the Linux kernel did not properly validate control bits, resulting in an out of bounds buffer read. A local attacker could use this to possibly expose sensitive information (kernel memory). (CVE-2019-2101) It was discovered that the Marvell Wireless LAN device driver in the Linux kernel did not properly validate the BSS descriptor. A local attacker could possibly use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-3846) Jason Wang discovered that an infinite loop vulnerability existed in the virtio net driver in the Linux kernel. A local attacker in a guest VM could possibly use this to cause a denial of service in the host system. (CVE-2019-3900) Daniele Antonioli, Nils Ole Tippenhauer, and Kasper B. Rasmussen discovered that the Bluetooth protocol BR/EDR specification did not properly require sufficiently strong encryption key lengths. A physicall proximate attacker could use this to expose sensitive information. (CVE-2019-9506) It was discovered that the Appletalk IP encapsulation driver in the Linux kernel did not properly prevent kernel addresses from being copied to user space. A local attacker with the CAP_NET_ADMIN capability could use this to expose sensitive information. (CVE-2018-20511) It was discovered that a race condition existed in the USB YUREX device driver in the Linux kernel. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2019-15216) It was discovered that the Siano USB MDTV receiver device driver in the Linux kernel made improper assumptions about the device characteristics. A physically proximate attacker could use this cause a denial of service (system crash). (CVE-2019-15218) It was discovered that the Line 6 POD USB device driver in the Linux kernel did not properly validate data size information from the device. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2019-15221) Muyu Yu discovered that the CAN implementation in the Linux kernel in some situations did not properly restrict the field size when processing outgoing frames. A local attacker with CAP_NET_ADMIN privileges could use this to execute arbitrary code. (CVE-2019-3701) Vladis Dronov discovered that the debug interface for the Linux kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id128478
    published2019-09-03
    reporterUbuntu Security Notice (C) 2019 Canonical, Inc. / NASL script (C) 2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/128478
    titleUbuntu 16.04 LTS / 18.04 LTS : linux-aws vulnerabilities (USN-4118-1)
    code
    #
    # (C) Tenable Network Security, Inc.
    #
    # The descriptive text and package checks in this plugin were
    # extracted from Ubuntu Security Notice USN-4118-1. The text 
    # itself is copyright (C) Canonical, Inc. See 
    # <http://www.ubuntu.com/usn/>. Ubuntu(R) is a registered 
    # trademark of Canonical, Inc.
    #
    
    include("compat.inc");
    
    if (description)
    {
      script_id(128478);
      script_version("1.4");
      script_cvs_date("Date: 2019/10/24 11:30:51");
    
      script_cve_id("CVE-2018-13053", "CVE-2018-13093", "CVE-2018-13096", "CVE-2018-13097", "CVE-2018-13098", "CVE-2018-13099", "CVE-2018-13100", "CVE-2018-14609", "CVE-2018-14610", "CVE-2018-14611", "CVE-2018-14612", "CVE-2018-14613", "CVE-2018-14614", "CVE-2018-14615", "CVE-2018-14616", "CVE-2018-14617", "CVE-2018-16862", "CVE-2018-19985", "CVE-2018-20169", "CVE-2018-20511", "CVE-2018-20784", "CVE-2018-20856", "CVE-2018-5383", "CVE-2019-0136", "CVE-2019-10126", "CVE-2019-10207", "CVE-2019-10638", "CVE-2019-10639", "CVE-2019-11085", "CVE-2019-11487", "CVE-2019-11599", "CVE-2019-11810", "CVE-2019-11815", "CVE-2019-11833", "CVE-2019-11884", "CVE-2019-12818", "CVE-2019-12819", "CVE-2019-12984", "CVE-2019-13233", "CVE-2019-13272", "CVE-2019-13631", "CVE-2019-14283", "CVE-2019-14284", "CVE-2019-14763", "CVE-2019-15090", "CVE-2019-15211", "CVE-2019-15212", "CVE-2019-15214", "CVE-2019-15215", "CVE-2019-15216", "CVE-2019-15218", "CVE-2019-15220", "CVE-2019-15221", "CVE-2019-15292", "CVE-2019-2024", "CVE-2019-2101", "CVE-2019-3701", "CVE-2019-3819", "CVE-2019-3846", "CVE-2019-3900", "CVE-2019-9506");
      script_xref(name:"USN", value:"4118-1");
    
      script_name(english:"Ubuntu 16.04 LTS / 18.04 LTS : linux-aws vulnerabilities (USN-4118-1)");
      script_summary(english:"Checks dpkg output for updated packages.");
    
      script_set_attribute(
        attribute:"synopsis", 
        value:
    "The remote Ubuntu host is missing one or more security-related
    patches."
      );
      script_set_attribute(
        attribute:"description", 
        value:
    "It was discovered that the alarmtimer implementation in the Linux
    kernel contained an integer overflow vulnerability. A local attacker
    could use this to cause a denial of service. (CVE-2018-13053)
    
    Wen Xu discovered that the XFS filesystem implementation in the Linux
    kernel did not properly track inode validations. An attacker could use
    this to construct a malicious XFS image that, when mounted, could
    cause a denial of service (system crash). (CVE-2018-13093)
    
    Wen Xu discovered that the f2fs file system implementation in the
    Linux kernel did not properly validate metadata. An attacker could use
    this to construct a malicious f2fs image that, when mounted, could
    cause a denial of service (system crash). (CVE-2018-13096,
    CVE-2018-13097, CVE-2018-13098, CVE-2018-13099, CVE-2018-13100,
    CVE-2018-14614, CVE-2018-14615, CVE-2018-14616)
    
    Wen Xu and Po-Ning Tseng discovered that btrfs file system
    implementation in the Linux kernel did not properly validate metadata.
    An attacker could use this to construct a malicious btrfs image that,
    when mounted, could cause a denial of service (system crash).
    (CVE-2018-14609, CVE-2018-14610, CVE-2018-14611, CVE-2018-14612,
    CVE-2018-14613)
    
    Wen Xu discovered that the HFS+ filesystem implementation in the Linux
    kernel did not properly handle malformed catalog data in some
    situations. An attacker could use this to construct a malicious HFS+
    image that, when mounted, could cause a denial of service (system
    crash). (CVE-2018-14617)
    
    Vasily Averin and Pavel Tikhomirov discovered that the cleancache
    subsystem of the Linux kernel did not properly initialize new files in
    some situations. A local attacker could use this to expose sensitive
    information. (CVE-2018-16862)
    
    Hui Peng and Mathias Payer discovered that the Option USB High Speed
    driver in the Linux kernel did not properly validate metadata received
    from the device. A physically proximate attacker could use this to
    cause a denial of service (system crash). (CVE-2018-19985)
    
    Hui Peng and Mathias Payer discovered that the USB subsystem in the
    Linux kernel did not properly handle size checks when handling an
    extra USB descriptor. A physically proximate attacker could use this
    to cause a denial of service (system crash). (CVE-2018-20169)
    
    Zhipeng Xie discovered that an infinite loop could triggered in the
    CFS Linux kernel process scheduler. A local attacker could possibly
    use this to cause a denial of service. (CVE-2018-20784)
    
    It was discovered that a use-after-free error existed in the block
    layer subsystem of the Linux kernel when certain failure conditions
    occurred. A local attacker could possibly use this to cause a denial
    of service (system crash) or possibly execute arbitrary code.
    (CVE-2018-20856)
    
    Eli Biham and Lior Neumann discovered that the Bluetooth
    implementation in the Linux kernel did not properly validate elliptic
    curve parameters during Diffie-Hellman key exchange in some
    situations. An attacker could use this to expose sensitive
    information. (CVE-2018-5383)
    
    It was discovered that the Intel wifi device driver in the Linux
    kernel did not properly validate certain Tunneled Direct Link Setup
    (TDLS). A physically proximate attacker could use this to cause a
    denial of service (wifi disconnect). (CVE-2019-0136)
    
    It was discovered that a heap buffer overflow existed in the Marvell
    Wireless LAN device driver for the Linux kernel. An attacker could use
    this to cause a denial of service (system crash) or possibly execute
    arbitrary code. (CVE-2019-10126)
    
    It was discovered that the Bluetooth UART implementation in the Linux
    kernel did not properly check for missing tty operations. A local
    attacker could use this to cause a denial of service. (CVE-2019-10207)
    
    Amit Klein and Benny Pinkas discovered that the Linux kernel did not
    sufficiently randomize IP ID values generated for connectionless
    networking protocols. A remote attacker could use this to track
    particular Linux devices. (CVE-2019-10638)
    
    Amit Klein and Benny Pinkas discovered that the location of kernel
    addresses could exposed by the implementation of connection-less
    network protocols in the Linux kernel. A remote attacker could
    possibly use this to assist in the exploitation of another
    vulnerability in the Linux kernel. (CVE-2019-10639)
    
    Adam Zabrocki discovered that the Intel i915 kernel mode graphics
    driver in the Linux kernel did not properly restrict mmap() ranges in
    some situations. A local attacker could use this to cause a denial of
    service (system crash) or possibly execute arbitrary code.
    (CVE-2019-11085)
    
    It was discovered that an integer overflow existed in the Linux kernel
    when reference counting pages, leading to potential use-after-free
    issues. A local attacker could use this to cause a denial of service
    (system crash) or possibly execute arbitrary code. (CVE-2019-11487)
    
    Jann Horn discovered that a race condition existed in the Linux kernel
    when performing core dumps. A local attacker could use this to cause a
    denial of service (system crash) or expose sensitive information.
    (CVE-2019-11599)
    
    It was discovered that a NULL pointer dereference vulnerability
    existed in the LSI Logic MegaRAID driver in the Linux kernel. A local
    attacker could use this to cause a denial of service (system crash).
    (CVE-2019-11810)
    
    It was discovered that a race condition leading to a use-after-free
    existed in the Reliable Datagram Sockets (RDS) protocol implementation
    in the Linux kernel. The RDS protocol is blacklisted by default in
    Ubuntu. If enabled, a local attacker could use this to cause a denial
    of service (system crash) or possibly execute arbitrary code.
    (CVE-2019-11815)
    
    It was discovered that the ext4 file system implementation in the
    Linux kernel did not properly zero out memory in some situations. A
    local attacker could use this to expose sensitive information (kernel
    memory). (CVE-2019-11833)
    
    It was discovered that the Bluetooth Human Interface Device Protocol
    (HIDP) implementation in the Linux kernel did not properly verify
    strings were NULL terminated in certain situations. A local attacker
    could use this to expose sensitive information (kernel memory).
    (CVE-2019-11884)
    
    It was discovered that a NULL pointer dereference vulnerabilty existed
    in the Near-field communication (NFC) implementation in the Linux
    kernel. An attacker could use this to cause a denial of service
    (system crash). (CVE-2019-12818)
    
    It was discovered that the MDIO bus devices subsystem in the Linux
    kernel improperly dropped a device reference in an error condition,
    leading to a use-after-free. An attacker could use this to cause a
    denial of service (system crash). (CVE-2019-12819)
    
    It was discovered that a NULL pointer dereference vulnerability
    existed in the Near-field communication (NFC) implementation in the
    Linux kernel. A local attacker could use this to cause a denial of
    service (system crash). (CVE-2019-12984)
    
    Jann Horn discovered a use-after-free vulnerability in the Linux
    kernel when accessing LDT entries in some situations. A local attacker
    could use this to cause a denial of service (system crash) or possibly
    execute arbitrary code. (CVE-2019-13233)
    
    Jann Horn discovered that the ptrace implementation in the Linux
    kernel did not properly record credentials in some situations. A local
    attacker could use this to cause a denial of service (system crash) or
    possibly gain administrative privileges. (CVE-2019-13272)
    
    It was discovered that the GTCO tablet input driver in the Linux
    kernel did not properly bounds check the initial HID report sent by
    the device. A physically proximate attacker could use to cause a
    denial of service (system crash) or possibly execute arbitrary code.
    (CVE-2019-13631)
    
    It was discovered that the floppy driver in the Linux kernel did not
    properly validate meta data, leading to a buffer overread. A local
    attacker could use this to cause a denial of service (system crash).
    (CVE-2019-14283)
    
    It was discovered that the floppy driver in the Linux kernel did not
    properly validate ioctl() calls, leading to a division-by-zero. A
    local attacker could use this to cause a denial of service (system
    crash). (CVE-2019-14284)
    
    Tuba Yavuz discovered that a race condition existed in the DesignWare
    USB3 DRD Controller device driver in the Linux kernel. A physically
    proximate attacker could use this to cause a denial of service.
    (CVE-2019-14763)
    
    It was discovered that an out-of-bounds read existed in the QLogic
    QEDI iSCSI Initiator Driver in the Linux kernel. A local attacker
    could possibly use this to expose sensitive information (kernel
    memory). (CVE-2019-15090)
    
    It was discovered that the Raremono AM/FM/SW radio device driver in
    the Linux kernel did not properly allocate memory, leading to a
    use-after-free. A physically proximate attacker could use this to
    cause a denial of service or possibly execute arbitrary code.
    (CVE-2019-15211)
    
    It was discovered at a double-free error existed in the USB Rio 500
    device driver for the Linux kernel. A physically proximate attacker
    could use this to cause a denial of service. (CVE-2019-15212)
    
    It was discovered that a race condition existed in the Advanced Linux
    Sound Architecture (ALSA) subsystem of the Linux kernel, leading to a
    potential use-after-free. A physically proximate attacker could use
    this to cause a denial of service (system crash) pro possibly execute
    arbitrary code. (CVE-2019-15214)
    
    It was discovered that a race condition existed in the CPiA2
    video4linux device driver for the Linux kernel, leading to a
    use-after-free. A physically proximate attacker could use this to
    cause a denial of service (system crash) or possibly execute arbitrary
    code. (CVE-2019-15215)
    
    It was discovered that a race condition existed in the Softmac USB
    Prism54 device driver in the Linux kernel. A physically proximate
    attacker could use this to cause a denial of service (system crash).
    (CVE-2019-15220)
    
    It was discovered that a use-after-free vulnerability existed in the
    Appletalk implementation in the Linux kernel if an error occurs during
    initialization. A local attacker could use this to cause a denial of
    service (system crash). (CVE-2019-15292)
    
    It was discovered that the Empia EM28xx DVB USB device driver
    implementation in the Linux kernel contained a use-after-free
    vulnerability when disconnecting the device. An attacker could use
    this to cause a denial of service (system crash). (CVE-2019-2024)
    
    It was discovered that the USB video device class implementation in
    the Linux kernel did not properly validate control bits, resulting in
    an out of bounds buffer read. A local attacker could use this to
    possibly expose sensitive information (kernel memory). (CVE-2019-2101)
    
    It was discovered that the Marvell Wireless LAN device driver in the
    Linux kernel did not properly validate the BSS descriptor. A local
    attacker could possibly use this to cause a denial of service (system
    crash) or possibly execute arbitrary code. (CVE-2019-3846)
    
    Jason Wang discovered that an infinite loop vulnerability existed in
    the virtio net driver in the Linux kernel. A local attacker in a guest
    VM could possibly use this to cause a denial of service in the host
    system. (CVE-2019-3900)
    
    Daniele Antonioli, Nils Ole Tippenhauer, and Kasper B. Rasmussen
    discovered that the Bluetooth protocol BR/EDR specification did not
    properly require sufficiently strong encryption key lengths. A
    physicall proximate attacker could use this to expose sensitive
    information. (CVE-2019-9506)
    
    It was discovered that the Appletalk IP encapsulation driver in the
    Linux kernel did not properly prevent kernel addresses from being
    copied to user space. A local attacker with the CAP_NET_ADMIN
    capability could use this to expose sensitive information.
    (CVE-2018-20511)
    
    It was discovered that a race condition existed in the USB YUREX
    device driver in the Linux kernel. A physically proximate attacker
    could use this to cause a denial of service (system crash).
    (CVE-2019-15216)
    
    It was discovered that the Siano USB MDTV receiver device driver in
    the Linux kernel made improper assumptions about the device
    characteristics. A physically proximate attacker could use this cause
    a denial of service (system crash). (CVE-2019-15218)
    
    It was discovered that the Line 6 POD USB device driver in the Linux
    kernel did not properly validate data size information from the
    device. A physically proximate attacker could use this to cause a
    denial of service (system crash). (CVE-2019-15221)
    
    Muyu Yu discovered that the CAN implementation in the Linux kernel in
    some situations did not properly restrict the field size when
    processing outgoing frames. A local attacker with CAP_NET_ADMIN
    privileges could use this to execute arbitrary code. (CVE-2019-3701)
    
    Vladis Dronov discovered that the debug interface for the Linux
    kernel's HID subsystem did not properly validate passed parameters in
    some situations. A local privileged attacker could use this to cause a
    denial of service (infinite loop). (CVE-2019-3819).
    
    Note that Tenable Network Security has extracted the preceding
    description block directly from the Ubuntu security advisory. Tenable
    has attempted to automatically clean and format it as much as possible
    without introducing additional issues."
      );
      script_set_attribute(
        attribute:"see_also",
        value:"https://usn.ubuntu.com/4118-1/"
      );
      script_set_attribute(
        attribute:"solution", 
        value:
    "Update the affected linux-image-4.15-aws, linux-image-aws and / or
    linux-image-aws-hwe packages."
      );
      script_set_cvss_base_vector("CVSS2#AV:N/AC:L/Au:N/C:C/I:C/A:C");
      script_set_cvss_temporal_vector("CVSS2#E:H/RL:OF/RC:C");
      script_set_cvss3_base_vector("CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H");
      script_set_cvss3_temporal_vector("CVSS:3.0/E:H/RL:O/RC:C");
      script_set_attribute(attribute:"exploitability_ease", value:"Exploits are available");
      script_set_attribute(attribute:"exploit_available", value:"true");
      script_set_attribute(attribute:"exploited_by_malware", value:"true");
      script_set_attribute(attribute:"metasploit_name", value:'Linux Polkit pkexec helper PTRACE_TRACEME local root exploit');
      script_set_attribute(attribute:"exploit_framework_metasploit", value:"true");
    
      script_set_attribute(attribute:"plugin_type", value:"local");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-4.15-aws");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-aws");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-aws-hwe");
      script_set_attribute(attribute:"cpe", value:"cpe:/o:canonical:ubuntu_linux:16.04");
      script_set_attribute(attribute:"cpe", value:"cpe:/o:canonical:ubuntu_linux:18.04:-:lts");
    
      script_set_attribute(attribute:"vuln_publication_date", value:"2018/07/02");
      script_set_attribute(attribute:"patch_publication_date", value:"2019/09/02");
      script_set_attribute(attribute:"plugin_publication_date", value:"2019/09/03");
      script_set_attribute(attribute:"generated_plugin", value:"current");
      script_end_attributes();
    
      script_category(ACT_GATHER_INFO);
      script_copyright(english:"Ubuntu Security Notice (C) 2019 Canonical, Inc. / NASL script (C) 2019 and is owned by Tenable, Inc. or an Affiliate thereof.");
      script_family(english:"Ubuntu Local Security Checks");
    
      script_dependencies("ssh_get_info.nasl", "linux_alt_patch_detect.nasl");
      script_require_keys("Host/cpu", "Host/Ubuntu", "Host/Ubuntu/release", "Host/Debian/dpkg-l");
    
      exit(0);
    }
    
    
    include("audit.inc");
    include("ubuntu.inc");
    include("ksplice.inc");
    
    if ( ! get_kb_item("Host/local_checks_enabled") ) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED);
    release = get_kb_item("Host/Ubuntu/release");
    if ( isnull(release) ) audit(AUDIT_OS_NOT, "Ubuntu");
    release = chomp(release);
    if (! preg(pattern:"^(16\.04|18\.04)$", string:release)) audit(AUDIT_OS_NOT, "Ubuntu 16.04 / 18.04", "Ubuntu " + release);
    if ( ! get_kb_item("Host/Debian/dpkg-l") ) audit(AUDIT_PACKAGE_LIST_MISSING);
    
    cpu = get_kb_item("Host/cpu");
    if (isnull(cpu)) audit(AUDIT_UNKNOWN_ARCH);
    if ("x86_64" >!< cpu && cpu !~ "^i[3-6]86$") audit(AUDIT_LOCAL_CHECKS_NOT_IMPLEMENTED, "Ubuntu", cpu);
    
    if (get_one_kb_item("Host/ksplice/kernel-cves"))
    {
      rm_kb_item(name:"Host/uptrack-uname-r");
      cve_list = make_list("CVE-2018-13053", "CVE-2018-13093", "CVE-2018-13096", "CVE-2018-13097", "CVE-2018-13098", "CVE-2018-13099", "CVE-2018-13100", "CVE-2018-14609", "CVE-2018-14610", "CVE-2018-14611", "CVE-2018-14612", "CVE-2018-14613", "CVE-2018-14614", "CVE-2018-14615", "CVE-2018-14616", "CVE-2018-14617", "CVE-2018-16862", "CVE-2018-19985", "CVE-2018-20169", "CVE-2018-20511", "CVE-2018-20784", "CVE-2018-20856", "CVE-2018-5383", "CVE-2019-0136", "CVE-2019-10126", "CVE-2019-10207", "CVE-2019-10638", "CVE-2019-10639", "CVE-2019-11085", "CVE-2019-11487", "CVE-2019-11599", "CVE-2019-11810", "CVE-2019-11815", "CVE-2019-11833", "CVE-2019-11884", "CVE-2019-12818", "CVE-2019-12819", "CVE-2019-12984", "CVE-2019-13233", "CVE-2019-13272", "CVE-2019-13631", "CVE-2019-14283", "CVE-2019-14284", "CVE-2019-14763", "CVE-2019-15090", "CVE-2019-15211", "CVE-2019-15212", "CVE-2019-15214", "CVE-2019-15215", "CVE-2019-15216", "CVE-2019-15218", "CVE-2019-15220", "CVE-2019-15221", "CVE-2019-15292", "CVE-2019-2024", "CVE-2019-2101", "CVE-2019-3701", "CVE-2019-3819", "CVE-2019-3846", "CVE-2019-3900", "CVE-2019-9506");
      if (ksplice_cves_check(cve_list))
      {
        audit(AUDIT_PATCH_INSTALLED, "KSplice hotfix for USN-4118-1");
      }
      else
      {
        _ubuntu_report = ksplice_reporting_text();
      }
    }
    
    flag = 0;
    
    if (ubuntu_check(osver:"16.04", pkgname:"linux-image-4.15.0-1047-aws", pkgver:"4.15.0-1047.49~16.04.1")) flag++;
    if (ubuntu_check(osver:"16.04", pkgname:"linux-image-aws-hwe", pkgver:"4.15.0.1047.47")) flag++;
    if (ubuntu_check(osver:"18.04", pkgname:"linux-image-4.15.0-1047-aws", pkgver:"4.15.0-1047.49")) flag++;
    if (ubuntu_check(osver:"18.04", pkgname:"linux-image-aws", pkgver:"4.15.0.1047.46")) flag++;
    
    if (flag)
    {
      security_report_v4(
        port       : 0,
        severity   : SECURITY_HOLE,
        extra      : ubuntu_report_get()
      );
      exit(0);
    }
    else
    {
      tested = ubuntu_pkg_tests_get();
      if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested);
      else audit(AUDIT_PACKAGE_NOT_INSTALLED, "linux-image-4.15-aws / linux-image-aws / linux-image-aws-hwe");
    }
    
  • NASL familyHuawei Local Security Checks
    NASL idEULEROS_SA-2019-1926.NASL
    descriptionAccording to the versions of the kernel packages installed, the EulerOS Virtualization for ARM 64 installation on the remote host is affected by the following vulnerabilities : - The kernel package contains the Linux kernel (vmlinuz), the core of any Linux operating system. The kernel handles the basic functions of the operating system: memory allocation, process allocation, device input and output, etc. Security Fix(es):A flaw was found in the Linux kernel
    last seen2020-04-16
    modified2019-09-17
    plugin id128929
    published2019-09-17
    reporterThis script is Copyright (C) 2019-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/128929
    titleEulerOS Virtualization for ARM 64 3.0.2.0 : kernel (EulerOS-SA-2019-1926)
    code
    #
    # (C) Tenable Network Security, Inc.
    #
    
    include("compat.inc");
    
    if (description)
    {
      script_id(128929);
      script_version("1.6");
      script_set_attribute(attribute:"plugin_modification_date", value:"2020/04/14");
    
      script_cve_id(
        "CVE-2018-16871",
        "CVE-2018-20855",
        "CVE-2018-20856",
        "CVE-2019-10639",
        "CVE-2019-12378",
        "CVE-2019-12380",
        "CVE-2019-12381",
        "CVE-2019-12456",
        "CVE-2019-12818",
        "CVE-2019-12819",
        "CVE-2019-12984",
        "CVE-2019-13272",
        "CVE-2019-13631",
        "CVE-2019-13648",
        "CVE-2019-14283",
        "CVE-2019-14284",
        "CVE-2019-14763",
        "CVE-2019-15211",
        "CVE-2019-15292"
      );
    
      script_name(english:"EulerOS Virtualization for ARM 64 3.0.2.0 : kernel (EulerOS-SA-2019-1926)");
      script_summary(english:"Checks the rpm output for the updated packages.");
    
      script_set_attribute(attribute:"synopsis", value:
    "The remote EulerOS Virtualization for ARM 64 host is missing multiple security
    updates.");
      script_set_attribute(attribute:"description", value:
    "According to the versions of the kernel packages installed, the
    EulerOS Virtualization for ARM 64 installation on the remote host is
    affected by the following vulnerabilities :
    
      - The kernel package contains the Linux kernel (vmlinuz),
        the core of any Linux operating system. The kernel
        handles the basic functions of the operating system:
        memory allocation, process allocation, device input and
        output, etc. Security Fix(es):A flaw was found in the
        Linux kernel's NFS implementation, all versions 3.x and
        all versions 4.x up to 4.20. An attacker, who is able
        to mount an exported NFS filesystem, is able to trigger
        a null pointer dereference by using an invalid NFS
        sequence. This can panic the machine and deny access to
        the NFS server. Any outstanding disk writes to the NFS
        server will be lost.(CVE-2018-16871)An issue was
        discovered in the Linux kernel before 4.18.7. In
        create_qp_common in drivers/infiniband/hw/mlx5/qp.c,
        mlx5_ib_create_qp_resp was never initialized, resulting
        in a leak of stack memory to
        userspace.(CVE-2018-20855)An issue was discovered in
        the Linux kernel before 4.18.7. In block/blk-core.c,
        there is an __blk_drain_queue() use-after-free because
        a certain error case is mishandled.(CVE-2018-20856)The
        Linux kernel 4.x (starting from 4.1) and 5.x before
        5.0.8 allows Information Exposure (partial kernel
        address disclosure), leading to a KASLR bypass.
        Specifically, it is possible to extract the KASLR
        kernel image offset using the IP ID values the kernel
        produces for connection-less protocols (e.g., UDP and
        ICMP). When such traffic is sent to multiple
        destination IP addresses, it is possible to obtain hash
        collisions (of indices to the counter array) and
        thereby obtain the hashing key (via enumeration). This
        key contains enough bits from a kernel address (of a
        static variable) so when the key is extracted (via
        enumeration), the offset of the kernel image is
        exposed. This attack can be carried out remotely, by
        the attacker forcing the target device to send UDP or
        ICMP (or certain other) traffic to attacker-controlled
        IP addresses. Forcing a server to send UDP traffic is
        trivial if the server is a DNS server. ICMP traffic is
        trivial if the server answers ICMP Echo requests
        (ping). For client targets, if the target visits the
        attacker's web page, then WebRTC or gQUIC can be used
        to force UDP traffic to attacker-controlled IP
        addresses. NOTE: this attack against KASLR became
        viable in 4.1 because IP ID generation was changed to
        have a dependency on an address associated with a
        network namespace.(CVE-2019-10639)** DISPUTED ** An
        issue was discovered in ip6_ra_control in
        net/ipv6/ipv6_sockglue.c in the Linux kernel through
        5.1.5. There is an unchecked kmalloc of new_ra, which
        might allow an attacker to cause a denial of service
        (NULL pointer dereference and system crash). NOTE: This
        has been disputed as not an
        issue.(CVE-2019-12378)**DISPUTED** An issue was
        discovered in the efi subsystem in the Linux kernel
        through 5.1.5. phys_efi_set_virtual_address_map in
        arch/x86/platform/efi/efi.c and efi_call_phys_prolog in
        arch/x86/platform/efi/efi_64.c mishandle memory
        allocation failures. NOTE: This id is disputed as not
        being an issue because ?All the code touched by the
        referenced commit runs only at boot, before any user
        processes are started. Therefore, there is no
        possibility for an unprivileged user to control
        it.?.(CVE-2019-12380)** DISPUTED ** An issue was
        discovered in ip_ra_control in net/ipv4/ip_sockglue.c
        in the Linux kernel through 5.1.5. There is an
        unchecked kmalloc of new_ra, which might allow an
        attacker to cause a denial of service (NULL pointer
        dereference and system crash). NOTE: this is disputed
        because new_ra is never used if it is
        NULL.(CVE-2019-12381)** DISPUTED ** An issue was
        discovered in the MPT3COMMAND case in _ctl_ioctl_main
        in drivers/scsi/mpt3sas/mpt3sas_ctl.c in the Linux
        kernel through 5.1.5. It allows local users to cause a
        denial of service or possibly have unspecified other
        impact by changing the value of ioc_number between two
        kernel reads of that value, aka a 'double fetch'
        vulnerability. NOTE: a third party reports that this is
        unexploitable because the doubly fetched value is not
        used.(CVE-2019-12456)An issue was discovered in the
        Linux kernel before 4.20.15. The nfc_llcp_build_tlv
        function in net/nfc/llcp_commands.c may return NULL. If
        the caller does not check for this, it will trigger a
        NULL pointer dereference. This will cause denial of
        service. This affects nfc_llcp_build_gb in
        net/nfc/llcp_core.c.(CVE-2019-12818)An issue was
        discovered in the Linux kernel before 5.0. The function
        __mdiobus_register() in drivers/net/phy/mdio_bus.c
        calls put_device(), which will trigger a
        fixed_mdio_bus_init use-after-free. This will cause a
        denial of service.(CVE-2019-12819)A NULL pointer
        dereference vulnerability in the function
        nfc_genl_deactivate_target() in net/nfc/netlink.c in
        the Linux kernel before 5.1.13 can be triggered by a
        malicious user-mode program that omits certain NFC
        attributes, leading to denial of
        service.(CVE-2019-12984)In the Linux kernel before
        5.1.17, ptrace_link in kernel/ptrace.c mishandles the
        recording of the credentials of a process that wants to
        create a ptrace relationship, which allows local users
        to obtain root access by leveraging certain scenarios
        with a parent-child process relationship, where a
        parent drops privileges and calls execve (potentially
        allowing control by an attacker). One contributing
        factor is an object lifetime issue (which can also
        cause a panic). Another contributing factor is
        incorrect marking of a ptrace relationship as
        privileged, which is exploitable through (for example)
        Polkit's pkexec helper with PTRACE_TRACEME. NOTE:
        SELinux deny_ptrace might be a usable workaround in
        some environments.(CVE-2019-13272)In
        parse_hid_report_descriptor in
        drivers/input/tablet/gtco.c in the Linux kernel through
        5.2.1, a malicious USB device can send an HID report
        that triggers an out-of-bounds write during generation
        of debugging messages.(CVE-2019-13631)In the Linux
        kernel through 5.2.1 on the powerpc platform, when
        hardware transactional memory is disabled, a local user
        can cause a denial of service (TM Bad Thing exception
        and system crash) via a sigreturn() system call that
        sends a crafted signal frame. This affects
        arch/powerpc/kernel/signal_32.c and
        arch/powerpc/kernel/signal_64.c.(CVE-2019-13648)In the
        Linux kernel before 5.2.3, set_geometry in
        drivers/block/floppy.c does not validate the sect and
        head fields, as demonstrated by an integer overflow and
        out-of-bounds read. It can be triggered by an
        unprivileged local user when a floppy disk has been
        inserted. NOTE: QEMU creates the floppy device by
        default.(CVE-2019-14283)In the Linux kernel before
        5.2.3, drivers/block/floppy.c allows a denial of
        service by setup_format_params division-by-zero. Two
        consecutive ioctls can trigger the bug: the first one
        should set the drive geometry with .sect and .rate
        values that make F_SECT_PER_TRACK be zero. Next, the
        floppy format operation should be called. It can be
        triggered by an unprivileged local user even when a
        floppy disk has not been inserted. NOTE: QEMU creates
        the floppy device by default.(CVE-2019-14284)In the
        Linux kernel before 4.16.4, a double-locking error in
        drivers/usb/dwc3/gadget.c may potentially cause a
        deadlock with f_hid.(CVE-2019-14763)An issue was
        discovered in the Linux kernel before 5.2.6. There is a
        use-after-free caused by a malicious USB device in the
        drivers/media/v4l2-core/v4l2-dev.c driver because
        drivers/media/radio/radio-raremono.c does not properly
        allocate memory.(CVE-2019-15211)An issue was discovered
        in the Linux kernel before 5.0.9. There is a
        use-after-free in atalk_proc_exit, related to
        net/appletalk/atalk_proc.c, net/appletalk/ddp.c, and
        net/appletalk/sysctl_net_atalk.c.(CVE-2019-15292)Note:
        kernel-4.19.36-vhulk1907.1.0.h529 and earlier versions
        in EulerOS Virtualization for ARM 64 3.0.2.0 return
        incorrect time information when executing the uname -a
        command.
    
    Note that Tenable Network Security has extracted the preceding
    description block directly from the EulerOS security advisory. Tenable
    has attempted to automatically clean and format it as much as possible
    without introducing additional issues.");
      # https://developer.huaweicloud.com/ict/en/site-euleros/euleros/security-advisories/EulerOS-SA-2019-1926
      script_set_attribute(attribute:"see_also", value:"http://www.nessus.org/u?9f4a8b79");
      script_set_attribute(attribute:"solution", value:
    "Update the affected kernel packages.");
      script_set_cvss_base_vector("CVSS2#AV:N/AC:L/Au:N/C:C/I:C/A:C");
      script_set_cvss_temporal_vector("CVSS2#E:H/RL:OF/RC:C");
      script_set_cvss3_base_vector("CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H");
      script_set_cvss3_temporal_vector("CVSS:3.0/E:H/RL:O/RC:C");
      script_set_attribute(attribute:"exploitability_ease", value:"Exploits are available");
      script_set_attribute(attribute:"exploit_available", value:"true");
      script_set_attribute(attribute:"exploited_by_malware", value:"true");
      script_set_attribute(attribute:"metasploit_name", value:'Linux Polkit pkexec helper PTRACE_TRACEME local root exploit');
      script_set_attribute(attribute:"exploit_framework_metasploit", value:"true");
    
      script_set_attribute(attribute:"patch_publication_date", value:"2019/09/17");
      script_set_attribute(attribute:"plugin_publication_date", value:"2019/09/17");
    
      script_set_attribute(attribute:"plugin_type", value:"local");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:huawei:euleros:kernel");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:huawei:euleros:kernel-devel");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:huawei:euleros:kernel-headers");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:huawei:euleros:kernel-tools");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:huawei:euleros:kernel-tools-libs");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:huawei:euleros:kernel-tools-libs-devel");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:huawei:euleros:perf");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:huawei:euleros:python-perf");
      script_set_attribute(attribute:"cpe", value:"cpe:/o:huawei:euleros:uvp:3.0.2.0");
      script_set_attribute(attribute:"generated_plugin", value:"current");
      script_end_attributes();
    
      script_category(ACT_GATHER_INFO);
      script_family(english:"Huawei Local Security Checks");
    
      script_copyright(english:"This script is Copyright (C) 2019-2020 and is owned by Tenable, Inc. or an Affiliate thereof.");
    
      script_dependencies("ssh_get_info.nasl");
      script_require_keys("Host/local_checks_enabled", "Host/cpu", "Host/EulerOS/release", "Host/EulerOS/rpm-list", "Host/EulerOS/uvp_version");
    
      exit(0);
    }
    
    include("audit.inc");
    include("global_settings.inc");
    include("rpm.inc");
    
    if (!get_kb_item("Host/local_checks_enabled")) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED);
    
    release = get_kb_item("Host/EulerOS/release");
    if (isnull(release) || release !~ "^EulerOS") audit(AUDIT_OS_NOT, "EulerOS");
    uvp = get_kb_item("Host/EulerOS/uvp_version");
    if (uvp != "3.0.2.0") audit(AUDIT_OS_NOT, "EulerOS Virtualization 3.0.2.0");
    if (!get_kb_item("Host/EulerOS/rpm-list")) audit(AUDIT_PACKAGE_LIST_MISSING);
    
    cpu = get_kb_item("Host/cpu");
    if (isnull(cpu)) audit(AUDIT_UNKNOWN_ARCH);
    if ("x86_64" >!< cpu && cpu !~ "^i[3-6]86$" && "aarch64" >!< cpu) audit(AUDIT_LOCAL_CHECKS_NOT_IMPLEMENTED, "EulerOS", cpu);
    if ("aarch64" >!< cpu) audit(AUDIT_ARCH_NOT, "aarch64", cpu);
    
    flag = 0;
    
    pkgs = ["kernel-4.19.36-vhulk1907.1.0.h420",
            "kernel-devel-4.19.36-vhulk1907.1.0.h420",
            "kernel-headers-4.19.36-vhulk1907.1.0.h420",
            "kernel-tools-4.19.36-vhulk1907.1.0.h420",
            "kernel-tools-libs-4.19.36-vhulk1907.1.0.h420",
            "kernel-tools-libs-devel-4.19.36-vhulk1907.1.0.h420",
            "perf-4.19.36-vhulk1907.1.0.h420",
            "python-perf-4.19.36-vhulk1907.1.0.h420"];
    
    foreach (pkg in pkgs)
      if (rpm_check(release:"EulerOS-2.0", reference:pkg)) flag++;
    
    if (flag)
    {
      security_report_v4(
        port       : 0,
        severity   : SECURITY_HOLE,
        extra      : rpm_report_get()
      );
      exit(0);
    }
    else
    {
      tested = pkg_tests_get();
      if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested);
      else audit(AUDIT_PACKAGE_NOT_INSTALLED, "kernel");
    }
    
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-4115-2.NASL
    descriptionUSN 4115-1 fixed vulnerabilities in the Linux 4.15 kernel for Ubuntu 18.04 LTS and Ubuntu 16.04 LTS. Unfortunately, as part of the update, a regression was introduced that caused a kernel crash when handling fragmented packets in some situations. This update addresses the issue. We apologize for the inconvenience. Original advisory details : Hui Peng and Mathias Payer discovered that the Option USB High Speed driver in the Linux kernel did not properly validate metadata received from the device. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2018-19985) Zhipeng Xie discovered that an infinite loop could triggered in the CFS Linux kernel process scheduler. A local attacker could possibly use this to cause a denial of service. (CVE-2018-20784) It was discovered that the Intel Wi-Fi device driver in the Linux kernel did not properly validate certain Tunneled Direct Link Setup (TDLS). A physically proximate attacker could use this to cause a denial of service (Wi-Fi disconnect). (CVE-2019-0136) It was discovered that the Bluetooth UART implementation in the Linux kernel did not properly check for missing tty operations. A local attacker could use this to cause a denial of service. (CVE-2019-10207) Amit Klein and Benny Pinkas discovered that the Linux kernel did not sufficiently randomize IP ID values generated for connectionless networking protocols. A remote attacker could use this to track particular Linux devices. (CVE-2019-10638) Amit Klein and Benny Pinkas discovered that the location of kernel addresses could be exposed by the implementation of connection-less network protocols in the Linux kernel. A remote attacker could possibly use this to assist in the exploitation of another vulnerability in the Linux kernel. (CVE-2019-10639) It was discovered that an integer overflow existed in the Linux kernel when reference counting pages, leading to potential use-after-free issues. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-11487) Jann Horn discovered that a race condition existed in the Linux kernel when performing core dumps. A local attacker could use this to cause a denial of service (system crash) or expose sensitive information. (CVE-2019-11599) It was discovered that a NULL pointer dereference vulnerability existed in the LSI Logic MegaRAID driver in the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-11810) It was discovered that the GTCO tablet input driver in the Linux kernel did not properly bounds check the initial HID report sent by the device. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-13631) Praveen Pandey discovered that the Linux kernel did not properly validate sent signals in some situations on PowerPC systems with transactional memory disabled. A local attacker could use this to cause a denial of service. (CVE-2019-13648) It was discovered that the floppy driver in the Linux kernel did not properly validate meta data, leading to a buffer overread. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-14283) It was discovered that the floppy driver in the Linux kernel did not properly validate ioctl() calls, leading to a division-by-zero. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-14284) Tuba Yavuz discovered that a race condition existed in the DesignWare USB3 DRD Controller device driver in the Linux kernel. A physically proximate attacker could use this to cause a denial of service. (CVE-2019-14763) It was discovered that an out-of-bounds read existed in the QLogic QEDI iSCSI Initiator Driver in the Linux kernel. A local attacker could possibly use this to expose sensitive information (kernel memory). (CVE-2019-15090) It was discovered that the Raremono AM/FM/SW radio device driver in the Linux kernel did not properly allocate memory, leading to a use-after-free. A physically proximate attacker could use this to cause a denial of service or possibly execute arbitrary code. (CVE-2019-15211) It was discovered at a double-free error existed in the USB Rio 500 device driver for the Linux kernel. A physically proximate attacker could use this to cause a denial of service. (CVE-2019-15212) It was discovered that a race condition existed in the Advanced Linux Sound Architecture (ALSA) subsystem of the Linux kernel, leading to a potential use-after-free. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-15214) It was discovered that a race condition existed in the CPiA2 video4linux device driver for the Linux kernel, leading to a use-after-free. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-15215) It was discovered that a race condition existed in the Softmac USB Prism54 device driver in the Linux kernel. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2019-15220) It was discovered that a use-after-free vulnerability existed in the AppleTalk implementation in the Linux kernel if an error occurs during initialization. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-15292) Jason Wang discovered that an infinite loop vulnerability existed in the virtio net driver in the Linux kernel. A local attacker in a guest VM could possibly use this to cause a denial of service in the host system. (CVE-2019-3900) Daniele Antonioli, Nils Ole Tippenhauer, and Kasper B. Rasmussen discovered that the Bluetooth protocol BR/EDR specification did not properly require sufficiently strong encryption key lengths. A physically proximate attacker could use this to expose sensitive information. (CVE-2019-9506) It was discovered that a race condition existed in the USB YUREX device driver in the Linux kernel. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2019-15216) It was discovered that the Siano USB MDTV receiver device driver in the Linux kernel made improper assumptions about the device characteristics. A physically proximate attacker could use this cause a denial of service (system crash). (CVE-2019-15218) It was discovered that the Line 6 POD USB device driver in the Linux kernel did not properly validate data size information from the device. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2019-15221) Muyu Yu discovered that the CAN implementation in the Linux kernel in some situations did not properly restrict the field size when processing outgoing frames. A local attacker with CAP_NET_ADMIN privileges could use this to execute arbitrary code. (CVE-2019-3701) Vladis Dronov discovered that the debug interface for the Linux kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id128680
    published2019-09-11
    reporterUbuntu Security Notice (C) 2019 Canonical, Inc. / NASL script (C) 2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/128680
    titleUbuntu 16.04 LTS / 18.04 LTS : linux, linux-aws, linux-aws-hwe, linux-azure, linux-gcp, linux-gke-4.15, (USN-4115-2)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-4115-1.NASL
    descriptionHui Peng and Mathias Payer discovered that the Option USB High Speed driver in the Linux kernel did not properly validate metadata received from the device. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2018-19985) Zhipeng Xie discovered that an infinite loop could triggered in the CFS Linux kernel process scheduler. A local attacker could possibly use this to cause a denial of service. (CVE-2018-20784) It was discovered that the Intel wifi device driver in the Linux kernel did not properly validate certain Tunneled Direct Link Setup (TDLS). A physically proximate attacker could use this to cause a denial of service (wifi disconnect). (CVE-2019-0136) It was discovered that the Bluetooth UART implementation in the Linux kernel did not properly check for missing tty operations. A local attacker could use this to cause a denial of service. (CVE-2019-10207) Amit Klein and Benny Pinkas discovered that the Linux kernel did not sufficiently randomize IP ID values generated for connectionless networking protocols. A remote attacker could use this to track particular Linux devices. (CVE-2019-10638) Amit Klein and Benny Pinkas discovered that the location of kernel addresses could exposed by the implementation of connection-less network protocols in the Linux kernel. A remote attacker could possibly use this to assist in the exploitation of another vulnerability in the Linux kernel. (CVE-2019-10639) It was discovered that an integer overflow existed in the Linux kernel when reference counting pages, leading to potential use-after-free issues. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-11487) Jann Horn discovered that a race condition existed in the Linux kernel when performing core dumps. A local attacker could use this to cause a denial of service (system crash) or expose sensitive information. (CVE-2019-11599) It was discovered that a NULL pointer dereference vulnerability existed in the LSI Logic MegaRAID driver in the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-11810) It was discovered that the GTCO tablet input driver in the Linux kernel did not properly bounds check the initial HID report sent by the device. A physically proximate attacker could use to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-13631) Praveen Pandey discovered that the Linux kernel did not properly validate sent signals in some situations on PowerPC systems with transactional memory disabled. A local attacker could use this to cause a denial of service. (CVE-2019-13648) It was discovered that the floppy driver in the Linux kernel did not properly validate meta data, leading to a buffer overread. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-14283) It was discovered that the floppy driver in the Linux kernel did not properly validate ioctl() calls, leading to a division-by-zero. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-14284) Tuba Yavuz discovered that a race condition existed in the DesignWare USB3 DRD Controller device driver in the Linux kernel. A physically proximate attacker could use this to cause a denial of service. (CVE-2019-14763) It was discovered that an out-of-bounds read existed in the QLogic QEDI iSCSI Initiator Driver in the Linux kernel. A local attacker could possibly use this to expose sensitive information (kernel memory). (CVE-2019-15090) It was discovered that the Raremono AM/FM/SW radio device driver in the Linux kernel did not properly allocate memory, leading to a use-after-free. A physically proximate attacker could use this to cause a denial of service or possibly execute arbitrary code. (CVE-2019-15211) It was discovered at a double-free error existed in the USB Rio 500 device driver for the Linux kernel. A physically proximate attacker could use this to cause a denial of service. (CVE-2019-15212) It was discovered that a race condition existed in the Advanced Linux Sound Architecture (ALSA) subsystem of the Linux kernel, leading to a potential use-after-free. A physically proximate attacker could use this to cause a denial of service (system crash) pro possibly execute arbitrary code. (CVE-2019-15214) It was discovered that a race condition existed in the CPiA2 video4linux device driver for the Linux kernel, leading to a use-after-free. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-15215) It was discovered that a race condition existed in the Softmac USB Prism54 device driver in the Linux kernel. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2019-15220) It was discovered that a use-after-free vulnerability existed in the Appletalk implementation in the Linux kernel if an error occurs during initialization. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-15292) Jason Wang discovered that an infinite loop vulnerability existed in the virtio net driver in the Linux kernel. A local attacker in a guest VM could possibly use this to cause a denial of service in the host system. (CVE-2019-3900) Daniele Antonioli, Nils Ole Tippenhauer, and Kasper B. Rasmussen discovered that the Bluetooth protocol BR/EDR specification did not properly require sufficiently strong encryption key lengths. A physicall proximate attacker could use this to expose sensitive information. (CVE-2019-9506) It was discovered that a race condition existed in the USB YUREX device driver in the Linux kernel. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2019-15216) It was discovered that the Siano USB MDTV receiver device driver in the Linux kernel made improper assumptions about the device characteristics. A physically proximate attacker could use this cause a denial of service (system crash). (CVE-2019-15218) It was discovered that the Line 6 POD USB device driver in the Linux kernel did not properly validate data size information from the device. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2019-15221) Muyu Yu discovered that the CAN implementation in the Linux kernel in some situations did not properly restrict the field size when processing outgoing frames. A local attacker with CAP_NET_ADMIN privileges could use this to execute arbitrary code. (CVE-2019-3701) Vladis Dronov discovered that the debug interface for the Linux kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id128475
    published2019-09-03
    reporterUbuntu Security Notice (C) 2019 Canonical, Inc. / NASL script (C) 2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/128475
    titleUbuntu 16.04 LTS / 18.04 LTS : linux, linux-azure, linux-gcp, linux-gke-4.15, linux-hwe, linux-kvm, (USN-4115-1)