Vulnerabilities > CVE-2018-20511 - Information Exposure vulnerability in multiple products
Attack vector
LOCAL Attack complexity
LOW Privileges required
LOW Confidentiality impact
HIGH Integrity impact
NONE Availability impact
NONE Summary
An issue was discovered in the Linux kernel before 4.18.11. The ipddp_ioctl function in drivers/net/appletalk/ipddp.c allows local users to obtain sensitive kernel address information by leveraging CAP_NET_ADMIN to read the ipddp_route dev and next fields via an SIOCFINDIPDDPRT ioctl call.
Vulnerable Configurations
Common Weakness Enumeration (CWE)
Common Attack Pattern Enumeration and Classification (CAPEC)
- Subverting Environment Variable Values The attacker directly or indirectly modifies environment variables used by or controlling the target software. The attacker's goal is to cause the target software to deviate from its expected operation in a manner that benefits the attacker.
- Footprinting An attacker engages in probing and exploration activity to identify constituents and properties of the target. Footprinting is a general term to describe a variety of information gathering techniques, often used by attackers in preparation for some attack. It consists of using tools to learn as much as possible about the composition, configuration, and security mechanisms of the targeted application, system or network. Information that might be collected during a footprinting effort could include open ports, applications and their versions, network topology, and similar information. While footprinting is not intended to be damaging (although certain activities, such as network scans, can sometimes cause disruptions to vulnerable applications inadvertently) it may often pave the way for more damaging attacks.
- Exploiting Trust in Client (aka Make the Client Invisible) An attack of this type exploits a programs' vulnerabilities in client/server communication channel authentication and data integrity. It leverages the implicit trust a server places in the client, or more importantly, that which the server believes is the client. An attacker executes this type of attack by placing themselves in the communication channel between client and server such that communication directly to the server is possible where the server believes it is communicating only with a valid client. There are numerous variations of this type of attack.
- Browser Fingerprinting An attacker carefully crafts small snippets of Java Script to efficiently detect the type of browser the potential victim is using. Many web-based attacks need prior knowledge of the web browser including the version of browser to ensure successful exploitation of a vulnerability. Having this knowledge allows an attacker to target the victim with attacks that specifically exploit known or zero day weaknesses in the type and version of the browser used by the victim. Automating this process via Java Script as a part of the same delivery system used to exploit the browser is considered more efficient as the attacker can supply a browser fingerprinting method and integrate it with exploit code, all contained in Java Script and in response to the same web page request by the browser.
- Session Credential Falsification through Prediction This attack targets predictable session ID in order to gain privileges. The attacker can predict the session ID used during a transaction to perform spoofing and session hijacking.
Nessus
NASL family Ubuntu Local Security Checks NASL id UBUNTU_USN-4118-1.NASL description It was discovered that the alarmtimer implementation in the Linux kernel contained an integer overflow vulnerability. A local attacker could use this to cause a denial of service. (CVE-2018-13053) Wen Xu discovered that the XFS filesystem implementation in the Linux kernel did not properly track inode validations. An attacker could use this to construct a malicious XFS image that, when mounted, could cause a denial of service (system crash). (CVE-2018-13093) Wen Xu discovered that the f2fs file system implementation in the Linux kernel did not properly validate metadata. An attacker could use this to construct a malicious f2fs image that, when mounted, could cause a denial of service (system crash). (CVE-2018-13096, CVE-2018-13097, CVE-2018-13098, CVE-2018-13099, CVE-2018-13100, CVE-2018-14614, CVE-2018-14615, CVE-2018-14616) Wen Xu and Po-Ning Tseng discovered that btrfs file system implementation in the Linux kernel did not properly validate metadata. An attacker could use this to construct a malicious btrfs image that, when mounted, could cause a denial of service (system crash). (CVE-2018-14609, CVE-2018-14610, CVE-2018-14611, CVE-2018-14612, CVE-2018-14613) Wen Xu discovered that the HFS+ filesystem implementation in the Linux kernel did not properly handle malformed catalog data in some situations. An attacker could use this to construct a malicious HFS+ image that, when mounted, could cause a denial of service (system crash). (CVE-2018-14617) Vasily Averin and Pavel Tikhomirov discovered that the cleancache subsystem of the Linux kernel did not properly initialize new files in some situations. A local attacker could use this to expose sensitive information. (CVE-2018-16862) Hui Peng and Mathias Payer discovered that the Option USB High Speed driver in the Linux kernel did not properly validate metadata received from the device. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2018-19985) Hui Peng and Mathias Payer discovered that the USB subsystem in the Linux kernel did not properly handle size checks when handling an extra USB descriptor. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2018-20169) Zhipeng Xie discovered that an infinite loop could triggered in the CFS Linux kernel process scheduler. A local attacker could possibly use this to cause a denial of service. (CVE-2018-20784) It was discovered that a use-after-free error existed in the block layer subsystem of the Linux kernel when certain failure conditions occurred. A local attacker could possibly use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-20856) Eli Biham and Lior Neumann discovered that the Bluetooth implementation in the Linux kernel did not properly validate elliptic curve parameters during Diffie-Hellman key exchange in some situations. An attacker could use this to expose sensitive information. (CVE-2018-5383) It was discovered that the Intel wifi device driver in the Linux kernel did not properly validate certain Tunneled Direct Link Setup (TDLS). A physically proximate attacker could use this to cause a denial of service (wifi disconnect). (CVE-2019-0136) It was discovered that a heap buffer overflow existed in the Marvell Wireless LAN device driver for the Linux kernel. An attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-10126) It was discovered that the Bluetooth UART implementation in the Linux kernel did not properly check for missing tty operations. A local attacker could use this to cause a denial of service. (CVE-2019-10207) Amit Klein and Benny Pinkas discovered that the Linux kernel did not sufficiently randomize IP ID values generated for connectionless networking protocols. A remote attacker could use this to track particular Linux devices. (CVE-2019-10638) Amit Klein and Benny Pinkas discovered that the location of kernel addresses could exposed by the implementation of connection-less network protocols in the Linux kernel. A remote attacker could possibly use this to assist in the exploitation of another vulnerability in the Linux kernel. (CVE-2019-10639) Adam Zabrocki discovered that the Intel i915 kernel mode graphics driver in the Linux kernel did not properly restrict mmap() ranges in some situations. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-11085) It was discovered that an integer overflow existed in the Linux kernel when reference counting pages, leading to potential use-after-free issues. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-11487) Jann Horn discovered that a race condition existed in the Linux kernel when performing core dumps. A local attacker could use this to cause a denial of service (system crash) or expose sensitive information. (CVE-2019-11599) It was discovered that a NULL pointer dereference vulnerability existed in the LSI Logic MegaRAID driver in the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-11810) It was discovered that a race condition leading to a use-after-free existed in the Reliable Datagram Sockets (RDS) protocol implementation in the Linux kernel. The RDS protocol is blacklisted by default in Ubuntu. If enabled, a local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-11815) It was discovered that the ext4 file system implementation in the Linux kernel did not properly zero out memory in some situations. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2019-11833) It was discovered that the Bluetooth Human Interface Device Protocol (HIDP) implementation in the Linux kernel did not properly verify strings were NULL terminated in certain situations. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2019-11884) It was discovered that a NULL pointer dereference vulnerabilty existed in the Near-field communication (NFC) implementation in the Linux kernel. An attacker could use this to cause a denial of service (system crash). (CVE-2019-12818) It was discovered that the MDIO bus devices subsystem in the Linux kernel improperly dropped a device reference in an error condition, leading to a use-after-free. An attacker could use this to cause a denial of service (system crash). (CVE-2019-12819) It was discovered that a NULL pointer dereference vulnerability existed in the Near-field communication (NFC) implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-12984) Jann Horn discovered a use-after-free vulnerability in the Linux kernel when accessing LDT entries in some situations. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-13233) Jann Horn discovered that the ptrace implementation in the Linux kernel did not properly record credentials in some situations. A local attacker could use this to cause a denial of service (system crash) or possibly gain administrative privileges. (CVE-2019-13272) It was discovered that the GTCO tablet input driver in the Linux kernel did not properly bounds check the initial HID report sent by the device. A physically proximate attacker could use to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-13631) It was discovered that the floppy driver in the Linux kernel did not properly validate meta data, leading to a buffer overread. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-14283) It was discovered that the floppy driver in the Linux kernel did not properly validate ioctl() calls, leading to a division-by-zero. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-14284) Tuba Yavuz discovered that a race condition existed in the DesignWare USB3 DRD Controller device driver in the Linux kernel. A physically proximate attacker could use this to cause a denial of service. (CVE-2019-14763) It was discovered that an out-of-bounds read existed in the QLogic QEDI iSCSI Initiator Driver in the Linux kernel. A local attacker could possibly use this to expose sensitive information (kernel memory). (CVE-2019-15090) It was discovered that the Raremono AM/FM/SW radio device driver in the Linux kernel did not properly allocate memory, leading to a use-after-free. A physically proximate attacker could use this to cause a denial of service or possibly execute arbitrary code. (CVE-2019-15211) It was discovered at a double-free error existed in the USB Rio 500 device driver for the Linux kernel. A physically proximate attacker could use this to cause a denial of service. (CVE-2019-15212) It was discovered that a race condition existed in the Advanced Linux Sound Architecture (ALSA) subsystem of the Linux kernel, leading to a potential use-after-free. A physically proximate attacker could use this to cause a denial of service (system crash) pro possibly execute arbitrary code. (CVE-2019-15214) It was discovered that a race condition existed in the CPiA2 video4linux device driver for the Linux kernel, leading to a use-after-free. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-15215) It was discovered that a race condition existed in the Softmac USB Prism54 device driver in the Linux kernel. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2019-15220) It was discovered that a use-after-free vulnerability existed in the Appletalk implementation in the Linux kernel if an error occurs during initialization. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-15292) It was discovered that the Empia EM28xx DVB USB device driver implementation in the Linux kernel contained a use-after-free vulnerability when disconnecting the device. An attacker could use this to cause a denial of service (system crash). (CVE-2019-2024) It was discovered that the USB video device class implementation in the Linux kernel did not properly validate control bits, resulting in an out of bounds buffer read. A local attacker could use this to possibly expose sensitive information (kernel memory). (CVE-2019-2101) It was discovered that the Marvell Wireless LAN device driver in the Linux kernel did not properly validate the BSS descriptor. A local attacker could possibly use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-3846) Jason Wang discovered that an infinite loop vulnerability existed in the virtio net driver in the Linux kernel. A local attacker in a guest VM could possibly use this to cause a denial of service in the host system. (CVE-2019-3900) Daniele Antonioli, Nils Ole Tippenhauer, and Kasper B. Rasmussen discovered that the Bluetooth protocol BR/EDR specification did not properly require sufficiently strong encryption key lengths. A physicall proximate attacker could use this to expose sensitive information. (CVE-2019-9506) It was discovered that the Appletalk IP encapsulation driver in the Linux kernel did not properly prevent kernel addresses from being copied to user space. A local attacker with the CAP_NET_ADMIN capability could use this to expose sensitive information. (CVE-2018-20511) It was discovered that a race condition existed in the USB YUREX device driver in the Linux kernel. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2019-15216) It was discovered that the Siano USB MDTV receiver device driver in the Linux kernel made improper assumptions about the device characteristics. A physically proximate attacker could use this cause a denial of service (system crash). (CVE-2019-15218) It was discovered that the Line 6 POD USB device driver in the Linux kernel did not properly validate data size information from the device. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2019-15221) Muyu Yu discovered that the CAN implementation in the Linux kernel in some situations did not properly restrict the field size when processing outgoing frames. A local attacker with CAP_NET_ADMIN privileges could use this to execute arbitrary code. (CVE-2019-3701) Vladis Dronov discovered that the debug interface for the Linux kernel last seen 2020-06-01 modified 2020-06-02 plugin id 128478 published 2019-09-03 reporter Ubuntu Security Notice (C) 2019 Canonical, Inc. / NASL script (C) 2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/128478 title Ubuntu 16.04 LTS / 18.04 LTS : linux-aws vulnerabilities (USN-4118-1) code # # (C) Tenable Network Security, Inc. # # The descriptive text and package checks in this plugin were # extracted from Ubuntu Security Notice USN-4118-1. The text # itself is copyright (C) Canonical, Inc. See # <http://www.ubuntu.com/usn/>. Ubuntu(R) is a registered # trademark of Canonical, Inc. # include("compat.inc"); if (description) { script_id(128478); script_version("1.4"); script_cvs_date("Date: 2019/10/24 11:30:51"); script_cve_id("CVE-2018-13053", "CVE-2018-13093", "CVE-2018-13096", "CVE-2018-13097", "CVE-2018-13098", "CVE-2018-13099", "CVE-2018-13100", "CVE-2018-14609", "CVE-2018-14610", "CVE-2018-14611", "CVE-2018-14612", "CVE-2018-14613", "CVE-2018-14614", "CVE-2018-14615", "CVE-2018-14616", "CVE-2018-14617", "CVE-2018-16862", "CVE-2018-19985", "CVE-2018-20169", "CVE-2018-20511", "CVE-2018-20784", "CVE-2018-20856", "CVE-2018-5383", "CVE-2019-0136", "CVE-2019-10126", "CVE-2019-10207", "CVE-2019-10638", "CVE-2019-10639", "CVE-2019-11085", "CVE-2019-11487", "CVE-2019-11599", "CVE-2019-11810", "CVE-2019-11815", "CVE-2019-11833", "CVE-2019-11884", "CVE-2019-12818", "CVE-2019-12819", "CVE-2019-12984", "CVE-2019-13233", "CVE-2019-13272", "CVE-2019-13631", "CVE-2019-14283", "CVE-2019-14284", "CVE-2019-14763", "CVE-2019-15090", "CVE-2019-15211", "CVE-2019-15212", "CVE-2019-15214", "CVE-2019-15215", "CVE-2019-15216", "CVE-2019-15218", "CVE-2019-15220", "CVE-2019-15221", "CVE-2019-15292", "CVE-2019-2024", "CVE-2019-2101", "CVE-2019-3701", "CVE-2019-3819", "CVE-2019-3846", "CVE-2019-3900", "CVE-2019-9506"); script_xref(name:"USN", value:"4118-1"); script_name(english:"Ubuntu 16.04 LTS / 18.04 LTS : linux-aws vulnerabilities (USN-4118-1)"); script_summary(english:"Checks dpkg output for updated packages."); script_set_attribute( attribute:"synopsis", value: "The remote Ubuntu host is missing one or more security-related patches." ); script_set_attribute( attribute:"description", value: "It was discovered that the alarmtimer implementation in the Linux kernel contained an integer overflow vulnerability. A local attacker could use this to cause a denial of service. (CVE-2018-13053) Wen Xu discovered that the XFS filesystem implementation in the Linux kernel did not properly track inode validations. An attacker could use this to construct a malicious XFS image that, when mounted, could cause a denial of service (system crash). (CVE-2018-13093) Wen Xu discovered that the f2fs file system implementation in the Linux kernel did not properly validate metadata. An attacker could use this to construct a malicious f2fs image that, when mounted, could cause a denial of service (system crash). (CVE-2018-13096, CVE-2018-13097, CVE-2018-13098, CVE-2018-13099, CVE-2018-13100, CVE-2018-14614, CVE-2018-14615, CVE-2018-14616) Wen Xu and Po-Ning Tseng discovered that btrfs file system implementation in the Linux kernel did not properly validate metadata. An attacker could use this to construct a malicious btrfs image that, when mounted, could cause a denial of service (system crash). (CVE-2018-14609, CVE-2018-14610, CVE-2018-14611, CVE-2018-14612, CVE-2018-14613) Wen Xu discovered that the HFS+ filesystem implementation in the Linux kernel did not properly handle malformed catalog data in some situations. An attacker could use this to construct a malicious HFS+ image that, when mounted, could cause a denial of service (system crash). (CVE-2018-14617) Vasily Averin and Pavel Tikhomirov discovered that the cleancache subsystem of the Linux kernel did not properly initialize new files in some situations. A local attacker could use this to expose sensitive information. (CVE-2018-16862) Hui Peng and Mathias Payer discovered that the Option USB High Speed driver in the Linux kernel did not properly validate metadata received from the device. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2018-19985) Hui Peng and Mathias Payer discovered that the USB subsystem in the Linux kernel did not properly handle size checks when handling an extra USB descriptor. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2018-20169) Zhipeng Xie discovered that an infinite loop could triggered in the CFS Linux kernel process scheduler. A local attacker could possibly use this to cause a denial of service. (CVE-2018-20784) It was discovered that a use-after-free error existed in the block layer subsystem of the Linux kernel when certain failure conditions occurred. A local attacker could possibly use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-20856) Eli Biham and Lior Neumann discovered that the Bluetooth implementation in the Linux kernel did not properly validate elliptic curve parameters during Diffie-Hellman key exchange in some situations. An attacker could use this to expose sensitive information. (CVE-2018-5383) It was discovered that the Intel wifi device driver in the Linux kernel did not properly validate certain Tunneled Direct Link Setup (TDLS). A physically proximate attacker could use this to cause a denial of service (wifi disconnect). (CVE-2019-0136) It was discovered that a heap buffer overflow existed in the Marvell Wireless LAN device driver for the Linux kernel. An attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-10126) It was discovered that the Bluetooth UART implementation in the Linux kernel did not properly check for missing tty operations. A local attacker could use this to cause a denial of service. (CVE-2019-10207) Amit Klein and Benny Pinkas discovered that the Linux kernel did not sufficiently randomize IP ID values generated for connectionless networking protocols. A remote attacker could use this to track particular Linux devices. (CVE-2019-10638) Amit Klein and Benny Pinkas discovered that the location of kernel addresses could exposed by the implementation of connection-less network protocols in the Linux kernel. A remote attacker could possibly use this to assist in the exploitation of another vulnerability in the Linux kernel. (CVE-2019-10639) Adam Zabrocki discovered that the Intel i915 kernel mode graphics driver in the Linux kernel did not properly restrict mmap() ranges in some situations. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-11085) It was discovered that an integer overflow existed in the Linux kernel when reference counting pages, leading to potential use-after-free issues. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-11487) Jann Horn discovered that a race condition existed in the Linux kernel when performing core dumps. A local attacker could use this to cause a denial of service (system crash) or expose sensitive information. (CVE-2019-11599) It was discovered that a NULL pointer dereference vulnerability existed in the LSI Logic MegaRAID driver in the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-11810) It was discovered that a race condition leading to a use-after-free existed in the Reliable Datagram Sockets (RDS) protocol implementation in the Linux kernel. The RDS protocol is blacklisted by default in Ubuntu. If enabled, a local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-11815) It was discovered that the ext4 file system implementation in the Linux kernel did not properly zero out memory in some situations. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2019-11833) It was discovered that the Bluetooth Human Interface Device Protocol (HIDP) implementation in the Linux kernel did not properly verify strings were NULL terminated in certain situations. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2019-11884) It was discovered that a NULL pointer dereference vulnerabilty existed in the Near-field communication (NFC) implementation in the Linux kernel. An attacker could use this to cause a denial of service (system crash). (CVE-2019-12818) It was discovered that the MDIO bus devices subsystem in the Linux kernel improperly dropped a device reference in an error condition, leading to a use-after-free. An attacker could use this to cause a denial of service (system crash). (CVE-2019-12819) It was discovered that a NULL pointer dereference vulnerability existed in the Near-field communication (NFC) implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-12984) Jann Horn discovered a use-after-free vulnerability in the Linux kernel when accessing LDT entries in some situations. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-13233) Jann Horn discovered that the ptrace implementation in the Linux kernel did not properly record credentials in some situations. A local attacker could use this to cause a denial of service (system crash) or possibly gain administrative privileges. (CVE-2019-13272) It was discovered that the GTCO tablet input driver in the Linux kernel did not properly bounds check the initial HID report sent by the device. A physically proximate attacker could use to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-13631) It was discovered that the floppy driver in the Linux kernel did not properly validate meta data, leading to a buffer overread. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-14283) It was discovered that the floppy driver in the Linux kernel did not properly validate ioctl() calls, leading to a division-by-zero. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-14284) Tuba Yavuz discovered that a race condition existed in the DesignWare USB3 DRD Controller device driver in the Linux kernel. A physically proximate attacker could use this to cause a denial of service. (CVE-2019-14763) It was discovered that an out-of-bounds read existed in the QLogic QEDI iSCSI Initiator Driver in the Linux kernel. A local attacker could possibly use this to expose sensitive information (kernel memory). (CVE-2019-15090) It was discovered that the Raremono AM/FM/SW radio device driver in the Linux kernel did not properly allocate memory, leading to a use-after-free. A physically proximate attacker could use this to cause a denial of service or possibly execute arbitrary code. (CVE-2019-15211) It was discovered at a double-free error existed in the USB Rio 500 device driver for the Linux kernel. A physically proximate attacker could use this to cause a denial of service. (CVE-2019-15212) It was discovered that a race condition existed in the Advanced Linux Sound Architecture (ALSA) subsystem of the Linux kernel, leading to a potential use-after-free. A physically proximate attacker could use this to cause a denial of service (system crash) pro possibly execute arbitrary code. (CVE-2019-15214) It was discovered that a race condition existed in the CPiA2 video4linux device driver for the Linux kernel, leading to a use-after-free. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-15215) It was discovered that a race condition existed in the Softmac USB Prism54 device driver in the Linux kernel. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2019-15220) It was discovered that a use-after-free vulnerability existed in the Appletalk implementation in the Linux kernel if an error occurs during initialization. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-15292) It was discovered that the Empia EM28xx DVB USB device driver implementation in the Linux kernel contained a use-after-free vulnerability when disconnecting the device. An attacker could use this to cause a denial of service (system crash). (CVE-2019-2024) It was discovered that the USB video device class implementation in the Linux kernel did not properly validate control bits, resulting in an out of bounds buffer read. A local attacker could use this to possibly expose sensitive information (kernel memory). (CVE-2019-2101) It was discovered that the Marvell Wireless LAN device driver in the Linux kernel did not properly validate the BSS descriptor. A local attacker could possibly use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-3846) Jason Wang discovered that an infinite loop vulnerability existed in the virtio net driver in the Linux kernel. A local attacker in a guest VM could possibly use this to cause a denial of service in the host system. (CVE-2019-3900) Daniele Antonioli, Nils Ole Tippenhauer, and Kasper B. Rasmussen discovered that the Bluetooth protocol BR/EDR specification did not properly require sufficiently strong encryption key lengths. A physicall proximate attacker could use this to expose sensitive information. (CVE-2019-9506) It was discovered that the Appletalk IP encapsulation driver in the Linux kernel did not properly prevent kernel addresses from being copied to user space. A local attacker with the CAP_NET_ADMIN capability could use this to expose sensitive information. (CVE-2018-20511) It was discovered that a race condition existed in the USB YUREX device driver in the Linux kernel. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2019-15216) It was discovered that the Siano USB MDTV receiver device driver in the Linux kernel made improper assumptions about the device characteristics. A physically proximate attacker could use this cause a denial of service (system crash). (CVE-2019-15218) It was discovered that the Line 6 POD USB device driver in the Linux kernel did not properly validate data size information from the device. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2019-15221) Muyu Yu discovered that the CAN implementation in the Linux kernel in some situations did not properly restrict the field size when processing outgoing frames. A local attacker with CAP_NET_ADMIN privileges could use this to execute arbitrary code. (CVE-2019-3701) Vladis Dronov discovered that the debug interface for the Linux kernel's HID subsystem did not properly validate passed parameters in some situations. A local privileged attacker could use this to cause a denial of service (infinite loop). (CVE-2019-3819). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues." ); script_set_attribute( attribute:"see_also", value:"https://usn.ubuntu.com/4118-1/" ); script_set_attribute( attribute:"solution", value: "Update the affected linux-image-4.15-aws, linux-image-aws and / or linux-image-aws-hwe packages." ); script_set_cvss_base_vector("CVSS2#AV:N/AC:L/Au:N/C:C/I:C/A:C"); script_set_cvss_temporal_vector("CVSS2#E:H/RL:OF/RC:C"); script_set_cvss3_base_vector("CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H"); script_set_cvss3_temporal_vector("CVSS:3.0/E:H/RL:O/RC:C"); script_set_attribute(attribute:"exploitability_ease", value:"Exploits are available"); script_set_attribute(attribute:"exploit_available", value:"true"); script_set_attribute(attribute:"exploited_by_malware", value:"true"); script_set_attribute(attribute:"metasploit_name", value:'Linux Polkit pkexec helper PTRACE_TRACEME local root exploit'); script_set_attribute(attribute:"exploit_framework_metasploit", value:"true"); script_set_attribute(attribute:"plugin_type", value:"local"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-4.15-aws"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-aws"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-aws-hwe"); script_set_attribute(attribute:"cpe", value:"cpe:/o:canonical:ubuntu_linux:16.04"); script_set_attribute(attribute:"cpe", value:"cpe:/o:canonical:ubuntu_linux:18.04:-:lts"); script_set_attribute(attribute:"vuln_publication_date", value:"2018/07/02"); script_set_attribute(attribute:"patch_publication_date", value:"2019/09/02"); script_set_attribute(attribute:"plugin_publication_date", value:"2019/09/03"); script_set_attribute(attribute:"generated_plugin", value:"current"); script_end_attributes(); script_category(ACT_GATHER_INFO); script_copyright(english:"Ubuntu Security Notice (C) 2019 Canonical, Inc. / NASL script (C) 2019 and is owned by Tenable, Inc. or an Affiliate thereof."); script_family(english:"Ubuntu Local Security Checks"); script_dependencies("ssh_get_info.nasl", "linux_alt_patch_detect.nasl"); script_require_keys("Host/cpu", "Host/Ubuntu", "Host/Ubuntu/release", "Host/Debian/dpkg-l"); exit(0); } include("audit.inc"); include("ubuntu.inc"); include("ksplice.inc"); if ( ! get_kb_item("Host/local_checks_enabled") ) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED); release = get_kb_item("Host/Ubuntu/release"); if ( isnull(release) ) audit(AUDIT_OS_NOT, "Ubuntu"); release = chomp(release); if (! preg(pattern:"^(16\.04|18\.04)$", string:release)) audit(AUDIT_OS_NOT, "Ubuntu 16.04 / 18.04", "Ubuntu " + release); if ( ! get_kb_item("Host/Debian/dpkg-l") ) audit(AUDIT_PACKAGE_LIST_MISSING); cpu = get_kb_item("Host/cpu"); if (isnull(cpu)) audit(AUDIT_UNKNOWN_ARCH); if ("x86_64" >!< cpu && cpu !~ "^i[3-6]86$") audit(AUDIT_LOCAL_CHECKS_NOT_IMPLEMENTED, "Ubuntu", cpu); if (get_one_kb_item("Host/ksplice/kernel-cves")) { rm_kb_item(name:"Host/uptrack-uname-r"); cve_list = make_list("CVE-2018-13053", "CVE-2018-13093", "CVE-2018-13096", "CVE-2018-13097", "CVE-2018-13098", "CVE-2018-13099", "CVE-2018-13100", "CVE-2018-14609", "CVE-2018-14610", "CVE-2018-14611", "CVE-2018-14612", "CVE-2018-14613", "CVE-2018-14614", "CVE-2018-14615", "CVE-2018-14616", "CVE-2018-14617", "CVE-2018-16862", "CVE-2018-19985", "CVE-2018-20169", "CVE-2018-20511", "CVE-2018-20784", "CVE-2018-20856", "CVE-2018-5383", "CVE-2019-0136", "CVE-2019-10126", "CVE-2019-10207", "CVE-2019-10638", "CVE-2019-10639", "CVE-2019-11085", "CVE-2019-11487", "CVE-2019-11599", "CVE-2019-11810", "CVE-2019-11815", "CVE-2019-11833", "CVE-2019-11884", "CVE-2019-12818", "CVE-2019-12819", "CVE-2019-12984", "CVE-2019-13233", "CVE-2019-13272", "CVE-2019-13631", "CVE-2019-14283", "CVE-2019-14284", "CVE-2019-14763", "CVE-2019-15090", "CVE-2019-15211", "CVE-2019-15212", "CVE-2019-15214", "CVE-2019-15215", "CVE-2019-15216", "CVE-2019-15218", "CVE-2019-15220", "CVE-2019-15221", "CVE-2019-15292", "CVE-2019-2024", "CVE-2019-2101", "CVE-2019-3701", "CVE-2019-3819", "CVE-2019-3846", "CVE-2019-3900", "CVE-2019-9506"); if (ksplice_cves_check(cve_list)) { audit(AUDIT_PATCH_INSTALLED, "KSplice hotfix for USN-4118-1"); } else { _ubuntu_report = ksplice_reporting_text(); } } flag = 0; if (ubuntu_check(osver:"16.04", pkgname:"linux-image-4.15.0-1047-aws", pkgver:"4.15.0-1047.49~16.04.1")) flag++; if (ubuntu_check(osver:"16.04", pkgname:"linux-image-aws-hwe", pkgver:"4.15.0.1047.47")) flag++; if (ubuntu_check(osver:"18.04", pkgname:"linux-image-4.15.0-1047-aws", pkgver:"4.15.0-1047.49")) flag++; if (ubuntu_check(osver:"18.04", pkgname:"linux-image-aws", pkgver:"4.15.0.1047.46")) flag++; if (flag) { security_report_v4( port : 0, severity : SECURITY_HOLE, extra : ubuntu_report_get() ); exit(0); } else { tested = ubuntu_pkg_tests_get(); if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested); else audit(AUDIT_PACKAGE_NOT_INSTALLED, "linux-image-4.15-aws / linux-image-aws / linux-image-aws-hwe"); }
NASL family Slackware Local Security Checks NASL id SLACKWARE_SSA_2019-030-01.NASL description New kernel packages are available for Slackware 14.2 to fix security issues. last seen 2020-03-17 modified 2019-01-31 plugin id 121505 published 2019-01-31 reporter This script is Copyright (C) 2019-2020 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/121505 title Slackware 14.2 : Slackware 14.2 kernel (SSA:2019-030-01) code # # (C) Tenable Network Security, Inc. # # The descriptive text and package checks in this plugin were # extracted from Slackware Security Advisory 2019-030-01. The text # itself is copyright (C) Slackware Linux, Inc. # include("compat.inc"); if (description) { script_id(121505); script_version("1.4"); script_set_attribute(attribute:"plugin_modification_date", value:"2020/02/20"); script_cve_id("CVE-2017-18241", "CVE-2017-18249", "CVE-2018-10880", "CVE-2018-1120", "CVE-2018-12896", "CVE-2018-13053", "CVE-2018-13096", "CVE-2018-13097", "CVE-2018-13099", "CVE-2018-13100", "CVE-2018-14610", "CVE-2018-14611", "CVE-2018-14612", "CVE-2018-14613", "CVE-2018-14614", "CVE-2018-14616", "CVE-2018-14633", "CVE-2018-16862", "CVE-2018-16884", "CVE-2018-17972", "CVE-2018-18021", "CVE-2018-18281", "CVE-2018-18690", "CVE-2018-18710", "CVE-2018-19824", "CVE-2018-19985", "CVE-2018-20169", "CVE-2018-20511", "CVE-2018-5848", "CVE-2018-7755", "CVE-2019-3701"); script_xref(name:"SSA", value:"2019-030-01"); script_name(english:"Slackware 14.2 : Slackware 14.2 kernel (SSA:2019-030-01)"); script_summary(english:"Checks for updated packages in /var/log/packages"); script_set_attribute( attribute:"synopsis", value:"The remote Slackware host is missing a security update." ); script_set_attribute( attribute:"description", value: "New kernel packages are available for Slackware 14.2 to fix security issues." ); # http://www.slackware.com/security/viewer.php?l=slackware-security&y=2019&m=slackware-security.842527 script_set_attribute( attribute:"see_also", value:"http://www.nessus.org/u?0db5ea06" ); script_set_attribute(attribute:"solution", value:"Update the affected packages."); script_set_cvss_base_vector("CVSS2#AV:N/AC:M/Au:N/C:P/I:P/A:C"); script_set_cvss_temporal_vector("CVSS2#E:POC/RL:OF/RC:C"); script_set_cvss3_base_vector("CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:H"); script_set_cvss3_temporal_vector("CVSS:3.0/E:P/RL:O/RC:C"); script_set_attribute(attribute:"cvss_score_source", value:"CVE-2018-14633"); script_set_attribute(attribute:"exploitability_ease", value:"Exploits are available"); script_set_attribute(attribute:"exploit_available", value:"true"); script_set_attribute(attribute:"plugin_type", value:"local"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:slackware:slackware_linux:kernel-firmware"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:slackware:slackware_linux:kernel-generic"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:slackware:slackware_linux:kernel-generic-smp"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:slackware:slackware_linux:kernel-headers"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:slackware:slackware_linux:kernel-huge"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:slackware:slackware_linux:kernel-huge-smp"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:slackware:slackware_linux:kernel-modules"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:slackware:slackware_linux:kernel-modules-smp"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:slackware:slackware_linux:kernel-source"); script_set_attribute(attribute:"cpe", value:"cpe:/o:slackware:slackware_linux:14.2"); script_set_attribute(attribute:"vuln_publication_date", value:"2018/03/08"); script_set_attribute(attribute:"patch_publication_date", value:"2019/01/30"); script_set_attribute(attribute:"plugin_publication_date", value:"2019/01/31"); script_set_attribute(attribute:"generated_plugin", value:"current"); script_end_attributes(); script_category(ACT_GATHER_INFO); script_copyright(english:"This script is Copyright (C) 2019-2020 and is owned by Tenable, Inc. or an Affiliate thereof."); script_family(english:"Slackware Local Security Checks"); script_dependencies("ssh_get_info.nasl"); script_require_keys("Host/local_checks_enabled", "Host/Slackware/release", "Host/Slackware/packages"); exit(0); } include("audit.inc"); include("global_settings.inc"); include("slackware.inc"); if (!get_kb_item("Host/local_checks_enabled")) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED); if (!get_kb_item("Host/Slackware/release")) audit(AUDIT_OS_NOT, "Slackware"); if (!get_kb_item("Host/Slackware/packages")) audit(AUDIT_PACKAGE_LIST_MISSING); cpu = get_kb_item("Host/cpu"); if (isnull(cpu)) audit(AUDIT_UNKNOWN_ARCH); if ("x86_64" >!< cpu && cpu !~ "^i[3-6]86$") audit(AUDIT_LOCAL_CHECKS_NOT_IMPLEMENTED, "Slackware", cpu); flag = 0; if (slackware_check(osver:"14.2", pkgname:"kernel-firmware", pkgver:"20190118_a8b75ca", pkgarch:"noarch", pkgnum:"1")) flag++; if (slackware_check(osver:"14.2", pkgname:"kernel-generic", pkgver:"4.4.172", pkgarch:"i586", pkgnum:"1")) flag++; if (slackware_check(osver:"14.2", pkgname:"kernel-generic-smp", pkgver:"4.4.172_smp", pkgarch:"i686", pkgnum:"1")) flag++; if (slackware_check(osver:"14.2", pkgname:"kernel-headers", pkgver:"4.4.172_smp", pkgarch:"x86", pkgnum:"1")) flag++; if (slackware_check(osver:"14.2", pkgname:"kernel-huge", pkgver:"4.4.172", pkgarch:"i586", pkgnum:"1")) flag++; if (slackware_check(osver:"14.2", pkgname:"kernel-huge-smp", pkgver:"4.4.172_smp", pkgarch:"i686", pkgnum:"1")) flag++; if (slackware_check(osver:"14.2", pkgname:"kernel-modules", pkgver:"4.4.172", pkgarch:"i586", pkgnum:"1")) flag++; if (slackware_check(osver:"14.2", pkgname:"kernel-modules-smp", pkgver:"4.4.172_smp", pkgarch:"i686", pkgnum:"1")) flag++; if (slackware_check(osver:"14.2", pkgname:"kernel-source", pkgver:"4.4.172_smp", pkgarch:"noarch", pkgnum:"1")) flag++; if (slackware_check(osver:"14.2", arch:"x86_64", pkgname:"kernel-firmware", pkgver:"20190118_a8b75ca", pkgarch:"noarch", pkgnum:"1")) flag++; if (slackware_check(osver:"14.2", arch:"x86_64", pkgname:"kernel-generic", pkgver:"4.4.172", pkgarch:"x86_64", pkgnum:"1")) flag++; if (slackware_check(osver:"14.2", arch:"x86_64", pkgname:"kernel-headers", pkgver:"4.4.172", pkgarch:"x86", pkgnum:"1")) flag++; if (slackware_check(osver:"14.2", arch:"x86_64", pkgname:"kernel-huge", pkgver:"4.4.172", pkgarch:"x86_64", pkgnum:"1")) flag++; if (slackware_check(osver:"14.2", arch:"x86_64", pkgname:"kernel-modules", pkgver:"4.4.172", pkgarch:"x86_64", pkgnum:"1")) flag++; if (slackware_check(osver:"14.2", arch:"x86_64", pkgname:"kernel-source", pkgver:"4.4.172", pkgarch:"noarch", pkgnum:"1")) flag++; if (flag) { if (report_verbosity > 0) security_hole(port:0, extra:slackware_report_get()); else security_hole(0); exit(0); } else audit(AUDIT_HOST_NOT, "affected");
NASL family Huawei Local Security Checks NASL id EULEROS_SA-2019-1587.NASL description According to the versions of the kernel packages installed, the EulerOS installation on the remote host is affected by the following vulnerabilities : - A malformed SG_IO ioctl issued for a SCSI device in the Linux kernel leads to a local kernel data leak manifesting in up to approximately 1000 memory pages copied to the userspace. The problem has limited scope as non-privileged users usually have no permissions to access SCSI device files.(CVE-2018-1000204) - A flaw in the load_elf_binary() function in the Linux kernel allows a local attacker to leak the base address of .text and stack sections for setuid binaries and bypass ASLR because install_exec_creds() is called too late in this function.(CVE-2019-11190) - A flaw was found in the Linux kernel in the hid_debug_events_read() function in the drivers/hid/hid-debug.c file. A lack of the certain checks may allow a privileged user ( last seen 2020-05-06 modified 2019-05-29 plugin id 125514 published 2019-05-29 reporter This script is Copyright (C) 2019-2020 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/125514 title EulerOS 2.0 SP3 : kernel (EulerOS-SA-2019-1587) NASL family Ubuntu Local Security Checks NASL id UBUNTU_USN-4094-1.NASL description It was discovered that the alarmtimer implementation in the Linux kernel contained an integer overflow vulnerability. A local attacker could use this to cause a denial of service. (CVE-2018-13053) Wen Xu discovered that the XFS filesystem implementation in the Linux kernel did not properly track inode validations. An attacker could use this to construct a malicious XFS image that, when mounted, could cause a denial of service (system crash). (CVE-2018-13093) Wen Xu discovered that the f2fs file system implementation in the Linux kernel did not properly validate metadata. An attacker could use this to construct a malicious f2fs image that, when mounted, could cause a denial of service (system crash). (CVE-2018-13097, CVE-2018-13099, CVE-2018-13100, CVE-2018-14614, CVE-2018-14616, CVE-2018-13096, CVE-2018-13098, CVE-2018-14615) Wen Xu and Po-Ning Tseng discovered that btrfs file system implementation in the Linux kernel did not properly validate metadata. An attacker could use this to construct a malicious btrfs image that, when mounted, could cause a denial of service (system crash). (CVE-2018-14610, CVE-2018-14611, CVE-2018-14612, CVE-2018-14613, CVE-2018-14609) Wen Xu discovered that the HFS+ filesystem implementation in the Linux kernel did not properly handle malformed catalog data in some situations. An attacker could use this to construct a malicious HFS+ image that, when mounted, could cause a denial of service (system crash). (CVE-2018-14617) Vasily Averin and Pavel Tikhomirov discovered that the cleancache subsystem of the Linux kernel did not properly initialize new files in some situations. A local attacker could use this to expose sensitive information. (CVE-2018-16862) Hui Peng and Mathias Payer discovered that the USB subsystem in the Linux kernel did not properly handle size checks when handling an extra USB descriptor. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2018-20169) It was discovered that a use-after-free error existed in the block layer subsystem of the Linux kernel when certain failure conditions occurred. A local attacker could possibly use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-20856) Eli Biham and Lior Neumann discovered that the Bluetooth implementation in the Linux kernel did not properly validate elliptic curve parameters during Diffie-Hellman key exchange in some situations. An attacker could use this to expose sensitive information. (CVE-2018-5383) It was discovered that a heap buffer overflow existed in the Marvell Wireless LAN device driver for the Linux kernel. An attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-10126) Andrei Vlad Lutas and Dan Lutas discovered that some x86 processors incorrectly handle SWAPGS instructions during speculative execution. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2019-1125) It was discovered that the PowerPC dlpar implementation in the Linux kernel did not properly check for allocation errors in some situations. A local attacker could possibly use this to cause a denial of service (system crash). (CVE-2019-12614) It was discovered that a NULL pointer dereference vulnerabilty existed in the Near-field communication (NFC) implementation in the Linux kernel. An attacker could use this to cause a denial of service (system crash). (CVE-2019-12818) It was discovered that the MDIO bus devices subsystem in the Linux kernel improperly dropped a device reference in an error condition, leading to a use-after-free. An attacker could use this to cause a denial of service (system crash). (CVE-2019-12819) It was discovered that a NULL pointer dereference vulnerability existed in the Near-field communication (NFC) implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-12984) Jann Horn discovered a use-after-free vulnerability in the Linux kernel when accessing LDT entries in some situations. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-13233) Jann Horn discovered that the ptrace implementation in the Linux kernel did not properly record credentials in some situations. A local attacker could use this to cause a denial of service (system crash) or possibly gain administrative privileges. (CVE-2019-13272) It was discovered that the Empia EM28xx DVB USB device driver implementation in the Linux kernel contained a use-after-free vulnerability when disconnecting the device. An attacker could use this to cause a denial of service (system crash). (CVE-2019-2024) It was discovered that the USB video device class implementation in the Linux kernel did not properly validate control bits, resulting in an out of bounds buffer read. A local attacker could use this to possibly expose sensitive information (kernel memory). (CVE-2019-2101) It was discovered that the Marvell Wireless LAN device driver in the Linux kernel did not properly validate the BSS descriptor. A local attacker could possibly use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-3846) It was discovered that the Appletalk IP encapsulation driver in the Linux kernel did not properly prevent kernel addresses from being copied to user space. A local attacker with the CAP_NET_ADMIN capability could use this to expose sensitive information. (CVE-2018-20511). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues. last seen 2020-06-01 modified 2020-06-02 plugin id 127889 published 2019-08-14 reporter Ubuntu Security Notice (C) 2019-2020 Canonical, Inc. / NASL script (C) 2020 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/127889 title Ubuntu 16.04 LTS / 18.04 LTS : linux, linux-hwe, linux-azure, linux-gcp, linux-gke-4.15, linux-kvm, (USN-4094-1) NASL family Debian Local Security Checks NASL id DEBIAN_DLA-1731.NASL description The linux update issued as DLA-1731-1 caused a regression in the vmxnet3 (VMware virtual network adapter) driver. This update corrects that regression, and an earlier regression in the CIFS network filesystem implementation introduced in DLA-1422-1. For reference the original advisory text follows. Several vulnerabilities have been discovered in the Linux kernel that may lead to a privilege escalation, denial of service or information leaks. CVE-2016-10741 A race condition was discovered in XFS that would result in a crash (BUG). A local user permitted to write to an XFS volume could use this for denial of service. CVE-2017-5753 Further instances of code that was vulnerable to Spectre variant 1 (bounds-check bypass) have been mitigated. CVE-2017-13305 A memory over-read was discovered in the keys subsystem last seen 2020-06-01 modified 2020-06-02 plugin id 123420 published 2019-03-28 reporter This script is Copyright (C) 2019-2020 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/123420 title Debian DLA-1731-2 : linux regression update (Spectre) NASL family Huawei Local Security Checks NASL id EULEROS_SA-2019-1076.NASL description According to the versions of the kernel packages installed, the EulerOS installation on the remote host is affected by the following vulnerabilities : - A security flaw was found in the ip_frag_reasm() function in net/ipv4/ip_fragment.c in the Linux kernel which can cause a later system crash in ip_do_fragment(). With certain non-default, but non-rare, configuration of a victim host, an attacker can trigger this crash remotely, thus leading to a remote denial of service.(CVE-2018-14641) - A flaw named FragmentSmack was found in the way the Linux kernel handled reassembly of fragmented IPv4 and IPv6 packets. A remote attacker could use this flaw to trigger time and calculation expensive fragment reassembly algorithm by sending specially crafted packets which could lead to a CPU saturation and hence a denial of service on the system.(CVE-2018-5391) - The resv_map_release function in mm/hugetlb.c in the Linux kernel, through 4.15.7, allows local users to cause a denial of service (BUG) via a crafted application that makes mmap system calls and has a large pgoff argument to the remap_file_pages system call. (CVE-2018-7740) - A use-after-free vulnerability was found in the way the Linux kernel last seen 2020-05-06 modified 2019-03-08 plugin id 122699 published 2019-03-08 reporter This script is Copyright (C) 2019-2020 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/122699 title EulerOS 2.0 SP5 : kernel (EulerOS-SA-2019-1076) NASL family Huawei Local Security Checks NASL id EULEROS_SA-2019-2353.NASL description According to the versions of the kernel packages installed, the EulerOS installation on the remote host is affected by the following vulnerabilities : - The kernel package contains the Linux kernel (vmlinuz), the core of any Linux operating system. The kernel handles the basic functions of the operating system: memory allocation, process allocation, device input and output, etc.Security Fix(es):The yam_ioctl function in drivers et/hamradio/yam.c in the Linux kernel before 3.12.8 does not initialize a certain structure member, which allows local users to obtain sensitive information from kernel memory by leveraging the CAP_NET_ADMIN capability for an SIOCYAMGCFG ioctl call.(CVE-2014-1446)The VFS subsystem in the Linux kernel 3.x provides an incomplete set of requirements for setattr operations that underspecifies removing extended privilege attributes, which allows local users to cause a denial of service (capability stripping) via a failed invocation of a system call, as demonstrated by using chown to remove a capability from the ping or Wireshark dumpcap program.(CVE-2015-1350)A certain backport in the TCP Fast Open implementation for the Linux kernel before 3.18 does not properly maintain a count value, which allow local users to cause a denial of service (system crash) via the Fast Open feature, as demonstrated by visiting the chrome://flags/#enable-tcp-fast-open URL when using certain 3.10.x through 3.16.x kernel builds, including longterm-maintenance releases and ckt (aka Canonical Kernel Team) builds.(CVE-2015-3332)The hub_activate function in drivers/usb/core/hub.c in the Linux kernel before 4.3.5 does not properly maintain a hub-interface data structure, which allows physically proximate attackers to cause a denial of service (invalid memory access and system crash) or possibly have unspecified other impact by unplugging a USB hub device.(CVE-2015-8816)In the Linux kernel before 4.1.4, a buffer overflow occurs when checking userspace params in drivers/media/dvb-frontends/cx24116.c. The maximum size for a DiSEqC command is 6, according to the userspace API. However, the code allows larger values such as 23.(CVE-2015-9289)The create_fixed_stream_quirk function in sound/usb/quirks.c in the snd-usb-audio driver in the Linux kernel before 4.5.1 allows physically proximate attackers to cause a denial of service (NULL pointer dereference or double free, and system crash) via a crafted endpoints value in a USB device descriptor.(CVE-2016-2184)The ati_remote2_probe function in drivers/input/misc/ati_remote2.c in the Linux kernel before 4.5.1 allows physically proximate attackers to cause a denial of service (NULL pointer dereference and system crash) via a crafted endpoints value in a USB device descriptor.(CVE-2016-2185)The powermate_probe function in drivers/input/misc/powermate.c in the Linux kernel before 4.5.1 allows physically proximate attackers to cause a denial of service (NULL pointer dereference and system crash) via a crafted endpoints value in a USB device descriptor.(CVE-2016-2186)The gtco_probe function in drivers/input/tablet/gtco.c in the Linux kernel through 4.5.2 allows physically proximate attackers to cause a denial of service (NULL pointer dereference and system crash) via a crafted endpoints value in a USB device descriptor.(CVE-2016-2187)Double free vulnerability in the snd_usbmidi_create function in sound/usb/midi.c in the Linux kernel before 4.5 allows physically proximate attackers to cause a denial of service (panic) or possibly have unspecified other impact via vectors involving an invalid USB descriptor.(CVE-2016-2384)The treo_attach function in drivers/usb/serial/visor.c in the Linux kernel before 4.5 allows physically proximate attackers to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact by inserting a USB device that lacks a (1) bulk-in or (2) interrupt-in endpoint.(CVE-2016-2782)The acm_probe function in drivers/usb/class/cdc-acm.c in the Linux kernel before 4.5.1 allows physically proximate attackers to cause a denial of service (NULL pointer dereference and system crash) via a USB device without both a control and a data endpoint descriptor.(CVE-2016-3138)The wacom_probe function in drivers/input/tablet/wacom_sys.c in the Linux kernel before 3.17 allows physically proximate attackers to cause a denial of service (NULL pointer dereference and system crash) via a crafted endpoints value in a USB device descriptor.(CVE-2016-3139)The digi_port_init function in drivers/usb/serial/digi_acceleport.c in the Linux kernel before 4.5.1 allows physically proximate attackers to cause a denial of service (NULL pointer dereference and system crash) via a crafted endpoints value in a USB device descriptor.(CVE-2016-3140)The ims_pcu_parse_cdc_data function in drivers/input/misc/ims-pcu.c in the Linux kernel before 4.5.1 allows physically proximate attackers to cause a denial of service (system crash) via a USB device without both a master and a slave interface.(CVE-2016-3689)The snd_timer_user_params function in sound/core/timer.c in the Linux kernel through 4.6 does not initialize a certain data structure, which allows local users to obtain sensitive information from kernel stack memory via crafted use of the ALSA timer interface.(CVE-2016-4569)sound/core/timer.c in the Linux kernel through 4.6 does not initialize certain r1 data structures, which allows local users to obtain sensitive information from kernel stack memory via crafted use of the ALSA timer interface, related to the (1) snd_timer_user_ccallback and (2) snd_timer_user_tinterrupt functions.(CVE-2016-4578)The x25_negotiate_facilities function in net/x25/x25_facilities.c in the Linux kernel before 4.5.5 does not properly initialize a certain data structure, which allows attackers to obtain sensitive information from kernel stack memory via an X.25 Call Request.(CVE-2016-4580)The arcmsr_iop_message_xfer function in drivers/scsi/arcmsr/arcmsr_hba.c in the Linux kernel through 4.8.2 does not restrict a certain length field, which allows local users to gain privileges or cause a denial of service (heap-based buffer overflow) via an ARCMSR_MESSAGE_WRITE_WQBUFFER control code.(CVE-2016-7425)The Linux Kernel running on AMD64 systems will sometimes map the contents of PIE executable, the heap or ld.so to where the stack is mapped allowing attackers to more easily manipulate the stack. Linux Kernel version 4.11.5 is affected.(CVE-2017-1000379)In android for MSM, Firefox OS for MSM, QRD Android, with all Android releases from CAF using the Linux kernel, a buffer overread is observed in nl80211_set_station when user space application sends attribute NL80211_ATTR_LOCAL_MESH_POWER_MODE with data of size less than 4 bytes(CVE-2017-11089)An elevation of privilege vulnerability in the kernel sound timer. Product: Android. Versions: Android kernel. Android ID A-37240993.(CVE-2017-13167)In ashmem_ioctl of ashmem.c, there is an out-of-bounds write due to insufficient locking when accessing asma. This could lead to a local elevation of privilege enabling code execution as a privileged process with no additional execution privileges needed. User interaction is not needed for exploitation. Product: Android. Versions: Android kernel. Android ID: A-66954097.(CVE-2017-13216)A information disclosure vulnerability in the Upstream kernel encrypted-keys. Product: Android. Versions: Android kernel. Android ID: A-70526974.(CVE-2017-13305)An integer overflow in the qla2x00_sysfs_write_optrom_ctl function in drivers/scsi/qla2xxx/qla_attr.c in the Linux kernel through 4.12.10 allows local users to cause a denial of service (memory corruption and system crash) by leveraging root access.(CVE-2017-14051)The Serial Attached SCSI (SAS) implementation in the Linux kernel through 4.15.9 mishandles a mutex within libsas, which allows local users to cause a denial of service (deadlock) by triggering certain error-handling code.(CVE-2017-18232)An issue was discovered in net/ipv6/ip6mr.c in the Linux kernel before 4.11. By setting a specific socket option, an attacker can control a pointer in kernel land and cause an inet_csk_listen_stop general protection fault, or potentially execute arbitrary code under certain circumstances. The issue can be triggered as root (e.g., inside a default LXC container or with the CAP_NET_ADMIN capability) or after namespace unsharing. This occurs because sk_type and protocol are not checked in the appropriate part of the ip6_mroute_* functions. NOTE: this affects Linux distributions that use 4.9.x longterm kernels before 4.9.187.(CVE-2017-18509)An issue was discovered in drivers/i2c/i2c-core-smbus.c in the Linux kernel before 4.14.15. There is an out of bounds write in the function i2c_smbus_xfer_emulated.(CVE-2017-18551)An issue was discovered in the Linux kernel before 4.14.11. A double free may be caused by the function allocate_trace_buffer in the file kernel/trace/trace.c.(CVE-2017-18595)The vmw_surface_define_ioctl function in drivers/gpu/drm/vmwgfx/vmwgfx_surface.c in the Linux kernel through 4.10.5 does not check for a zero value of certain levels data, which allows local users to cause a denial of service (ZERO_SIZE_PTR dereference, and GPF and possibly panic) via a crafted ioctl call for a /dev/dri/renderD* device.(CVE-2017-7261)The KEYS subsystem in the Linux kernel before 4.10.13 allows local users to cause a denial of service (memory consumption) via a series of KEY_REQKEY_DEFL_THREAD_KEYRING keyctl_set_reqkey_keyring calls.(CVE-2017-7472)The kernel_wait4 function in kernel/exit.c in the Linux kernel before 4.13, when an unspecified architecture and compiler is used, might allow local users to cause a denial of service by triggering an attempted use of the -INT_MIN value.(CVE-2018-10087)The kill_something_info function in kernel/signal.c in the Linux kernel before 4.13, when an unspecified architecture and compiler is used, might allow local users to cause a denial of service via an INT_MIN argument.(CVE-2018-10124)The xfs_dinode_verify function in fs/xfs/libxfs/xfs_inode_buf.c in the Linux kernel through 4.16.3 allows local users to cause a denial of service (xfs_ilock_attr_map_shared invalid pointer dereference) via a crafted xfs image.(CVE-2018-10322)The xfs_bmap_extents_to_btree function in fs/xfs/libxfs/xfs_bmap.c in the Linux kernel through 4.16.3 allows local users to cause a denial of service (xfs_bmapi_write NULL pointer dereference) via a crafted xfs image.(CVE-2018-10323)The do_get_mempolicy function in mm/mempolicy.c in the Linux kernel before 4.12.9 allows local users to cause a denial of service (use-after-free) or possibly have unspecified other impact via crafted system calls.(CVE-2018-10675)Linux kernel is vulnerable to a stack-out-of-bounds write in the ext4 filesystem code when mounting and writing to a crafted ext4 image in ext4_update_inline_data(). An attacker could use this to cause a system crash and a denial of service.(CVE-2018-10880)An issue was discovered in the Linux kernel through 4.17.3. An Integer Overflow in kernel/time/posix-timers.c in the POSIX timer code is caused by the way the overrun accounting works. Depending on interval and expiry time values, the overrun can be larger than INT_MAX, but the accounting is int based. This basically makes the accounting values, which are visible to user space via timer_getoverrun(2) and siginfo::si_overrun, random. For example, a local user can cause a denial of service (signed integer overflow) via crafted mmap, futex, timer_create, and timer_settime system calls.(CVE-2018-12896)An issue was discovered in the proc_pid_stack function in fs/proc/base.c in the Linux kernel through 4.18.11. It does not ensure that only root may inspect the kernel stack of an arbitrary task, allowing a local attacker to exploit racy stack unwinding and leak kernel task stack contents.(CVE-2018-17972)An issue was discovered in the Linux kernel through 4.19. An information leak in cdrom_ioctl_select_disc in drivers/cdrom/cdrom.c could be used by local attackers to read kernel memory because a cast from unsigned long to int interferes with bounds checking. This is similar to CVE-2018-10940 and CVE-2018-16658.(CVE-2018-18710 )An issue was discovered in the Linux kernel before 4.18.11. The ipddp_ioctl function in drivers et/appletalk/ipddp.c allows local users to obtain sensitive kernel address information by leveraging CAP_NET_ADMIN to read the ipddp_route dev and next fields via an SIOCFINDIPDDPRT ioctl call.(CVE-2018-20511)An issue was discovered in the Linux kernel before 4.18.7. In block/blk-core.c, there is an __blk_drain_queue() use-after-free because a certain error case is mishandled.(CVE-2018-20856)An issue was discovered in fs/xfs/xfs_super.c in the Linux kernel before 4.18. A use after free exists, related to xfs_fs_fill_super failure.(CVE-2018-20976)Systems with microprocessors utilizing speculative execution and branch prediction may allow unauthorized disclosure of information to an attacker with local user access via a speculative buffer overflow and side-channel analysis.(CVE-2018-3693)In the function sbusfb_ioctl_helper() in drivers/video/fbdev/sbuslib.c in the Linux kernel through 4.15, an integer signedness error allows arbitrary information leakage for the FBIOPUTCMAP_SPARC and FBIOGETCMAP_SPARC commands.(CVE-2018-6412)In nfc_llcp_build_sdreq_tlv of llcp_commands.c, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Product: Android. Versions: Android kernel. Android ID: A-73083945.(CVE-2018-9518 )Insufficient access control in the Intel(R) PROSet/Wireless WiFi Software driver before version 21.10 may allow an unauthenticated user to potentially enable denial of service via adjacent access.(CVE-2019-0136)A vulnerability was found in Linux kernel last seen 2020-05-08 modified 2019-12-10 plugin id 131845 published 2019-12-10 reporter This script is Copyright (C) 2019-2020 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/131845 title EulerOS 2.0 SP2 : kernel (EulerOS-SA-2019-2353) NASL family Huawei Local Security Checks NASL id EULEROS_SA-2019-1482.NASL description According to the versions of the kernel packages installed, the EulerOS Virtualization for ARM 64 installation on the remote host is affected by the following vulnerabilities : - An information-leak vulnerability was found in the kernel when it truncated a file to a smaller size which consisted of an inline extent that was compressed. The data between the new file size and the old file size was not discarded and the number of bytes used by the inode were not correctly decremented, which gave the wrong report for callers of the stat(2) syscall. This wasted metadata space and allowed for the truncated data to be leaked, and data corruption or loss to occur. A caller of the clone ioctl could exploit this flaw by using only standard file-system operations without root access to read the truncated data.(CVE-2015-8374i1/4%0 - crypto/pcrypt.c in the Linux kernel, before 4.14.13, mishandles freeing instances, allowing a local user able to access the AF_ALG-based AEAD interface (CONFIG_CRYPTO_USER_API_AEAD) and pcrypt (CONFIG_CRYPTO_PCRYPT) to cause a denial of service (kfree of an incorrect pointer) or possibly have unspecified other impact by executing a crafted sequence of system calls. Due to the nature of the flaw, privilege escalation cannot be fully ruled out, although we believe it is unlikely.(CVE-2017-18075i1/4%0 - An elevation of privilege vulnerability in the Qualcomm Wi-Fi driver could enable a local malicious application to execute arbitrary code within the context of the kernel. This issue is rated as High because it first requires compromising a privileged process. Product: Android. Versions: N/A. Android ID: A-32835279. References: QC-CR#1096945.(CVE-2017-0523i1/4%0 - The saa7164_bus_get function in drivers/media/pci/saa7164/saa7164-bus.c in the Linux kernel through 4.10.14 allows local users to cause a denial of service (out-of-bounds array access) or possibly have unspecified other impact by changing a certain sequence-number value, aka a last seen 2020-03-19 modified 2019-05-13 plugin id 124806 published 2019-05-13 reporter This script is Copyright (C) 2019-2020 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/124806 title EulerOS Virtualization for ARM 64 3.0.1.0 : kernel (EulerOS-SA-2019-1482)
References
- https://lkml.org/lkml/2018/9/27/480
- https://github.com/torvalds/linux/commit/9824dfae5741275473a23a7ed5756c7b6efacc9d
- https://cdn.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.18.11
- http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=9824dfae5741275473a23a7ed5756c7b6efacc9d
- http://www.securityfocus.com/bid/106347
- https://lists.debian.org/debian-lts-announce/2019/03/msg00034.html
- https://lists.debian.org/debian-lts-announce/2019/04/msg00004.html
- https://usn.ubuntu.com/4094-1/
- https://usn.ubuntu.com/4118-1/