Vulnerabilities > CVE-2017-9984 - Out-of-bounds Read vulnerability in Linux Kernel
Attack vector
LOCAL Attack complexity
LOW Privileges required
LOW Confidentiality impact
HIGH Integrity impact
HIGH Availability impact
HIGH Summary
The snd_msnd_interrupt function in sound/isa/msnd/msnd_pinnacle.c in the Linux kernel through 4.11.7 allows local users to cause a denial of service (over-boundary access) or possibly have unspecified other impact by changing the value of a message queue head pointer between two kernel reads of that value, aka a "double fetch" vulnerability.
Vulnerable Configurations
Common Weakness Enumeration (CWE)
Common Attack Pattern Enumeration and Classification (CAPEC)
- Overread Buffers An adversary attacks a target by providing input that causes an application to read beyond the boundary of a defined buffer. This typically occurs when a value influencing where to start or stop reading is set to reflect positions outside of the valid memory location of the buffer. This type of attack may result in exposure of sensitive information, a system crash, or arbitrary code execution.
Nessus
NASL family Ubuntu Local Security Checks NASL id UBUNTU_USN-3469-1.NASL description Anthony Perard discovered that the Xen virtual block driver did not properly initialize some data structures before passing them to user space. A local attacker in a guest VM could use this to expose sensitive information from the host OS or other guest VMs. (CVE-2017-10911) Bo Zhang discovered that the netlink wireless configuration interface in the Linux kernel did not properly validate attributes when handling certain requests. A local attacker with the CAP_NET_ADMIN could use this to cause a denial of service (system crash). (CVE-2017-12153) It was discovered that the nested KVM implementation in the Linux kernel in some situations did not properly prevent second level guests from reading and writing the hardware CR8 register. A local attacker in a guest could use this to cause a denial of service (system crash). It was discovered that the key management subsystem in the Linux kernel did not properly restrict key reads on negatively instantiated keys. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-12192) It was discovered that an integer overflow existed in the sysfs interface for the QLogic 24xx+ series SCSI driver in the Linux kernel. A local privileged attacker could use this to cause a denial of service (system crash). (CVE-2017-14051) It was discovered that the ATI Radeon framebuffer driver in the Linux kernel did not properly initialize a data structure returned to user space. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2017-14156) Dave Chinner discovered that the XFS filesystem did not enforce that the realtime inode flag was settable only on filesystems on a realtime device. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-14340) ChunYu Wang discovered that the iSCSI transport implementation in the Linux kernel did not properly validate data structures. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-14489) It was discovered that the generic SCSI driver in the Linux kernel did not properly initialize data returned to user space in some situations. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2017-14991) Dmitry Vyukov discovered that the Floating Point Unit (fpu) subsystem in the Linux kernel did not properly handle attempts to set reserved bits in a task last seen 2020-06-01 modified 2020-06-02 plugin id 104320 published 2017-11-01 reporter Ubuntu Security Notice (C) 2017-2019 Canonical, Inc. / NASL script (C) 2017-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/104320 title Ubuntu 16.04 LTS : linux, linux-aws, linux-gke, linux-kvm, linux-raspi2, linux-snapdragon vulnerabilities (USN-3469-1) code # # (C) Tenable Network Security, Inc. # # The descriptive text and package checks in this plugin were # extracted from Ubuntu Security Notice USN-3469-1. The text # itself is copyright (C) Canonical, Inc. See # <http://www.ubuntu.com/usn/>. Ubuntu(R) is a registered # trademark of Canonical, Inc. # include("compat.inc"); if (description) { script_id(104320); script_version("3.8"); script_cvs_date("Date: 2019/09/18 12:31:47"); script_cve_id("CVE-2017-10911", "CVE-2017-12153", "CVE-2017-12154", "CVE-2017-12192", "CVE-2017-14051", "CVE-2017-14156", "CVE-2017-14340", "CVE-2017-14489", "CVE-2017-14991", "CVE-2017-15537", "CVE-2017-9984", "CVE-2017-9985"); script_xref(name:"USN", value:"3469-1"); script_name(english:"Ubuntu 16.04 LTS : linux, linux-aws, linux-gke, linux-kvm, linux-raspi2, linux-snapdragon vulnerabilities (USN-3469-1)"); script_summary(english:"Checks dpkg output for updated packages."); script_set_attribute( attribute:"synopsis", value: "The remote Ubuntu host is missing one or more security-related patches." ); script_set_attribute( attribute:"description", value: "Anthony Perard discovered that the Xen virtual block driver did not properly initialize some data structures before passing them to user space. A local attacker in a guest VM could use this to expose sensitive information from the host OS or other guest VMs. (CVE-2017-10911) Bo Zhang discovered that the netlink wireless configuration interface in the Linux kernel did not properly validate attributes when handling certain requests. A local attacker with the CAP_NET_ADMIN could use this to cause a denial of service (system crash). (CVE-2017-12153) It was discovered that the nested KVM implementation in the Linux kernel in some situations did not properly prevent second level guests from reading and writing the hardware CR8 register. A local attacker in a guest could use this to cause a denial of service (system crash). It was discovered that the key management subsystem in the Linux kernel did not properly restrict key reads on negatively instantiated keys. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-12192) It was discovered that an integer overflow existed in the sysfs interface for the QLogic 24xx+ series SCSI driver in the Linux kernel. A local privileged attacker could use this to cause a denial of service (system crash). (CVE-2017-14051) It was discovered that the ATI Radeon framebuffer driver in the Linux kernel did not properly initialize a data structure returned to user space. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2017-14156) Dave Chinner discovered that the XFS filesystem did not enforce that the realtime inode flag was settable only on filesystems on a realtime device. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-14340) ChunYu Wang discovered that the iSCSI transport implementation in the Linux kernel did not properly validate data structures. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-14489) It was discovered that the generic SCSI driver in the Linux kernel did not properly initialize data returned to user space in some situations. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2017-14991) Dmitry Vyukov discovered that the Floating Point Unit (fpu) subsystem in the Linux kernel did not properly handle attempts to set reserved bits in a task's extended state (xstate) area. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-15537) Pengfei Wang discovered that the Turtle Beach MultiSound audio device driver in the Linux kernel contained race conditions when fetching from the ring-buffer. A local attacker could use this to cause a denial of service (infinite loop). (CVE-2017-9984, CVE-2017-9985). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues." ); script_set_attribute( attribute:"see_also", value:"https://usn.ubuntu.com/3469-1/" ); script_set_attribute(attribute:"solution", value:"Update the affected packages."); script_set_cvss_base_vector("CVSS2#AV:L/AC:L/Au:N/C:C/I:C/A:C"); script_set_cvss_temporal_vector("CVSS2#E:POC/RL:OF/RC:C"); script_set_cvss3_base_vector("CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H"); script_set_cvss3_temporal_vector("CVSS:3.0/E:P/RL:O/RC:C"); script_set_attribute(attribute:"exploitability_ease", value:"Exploits are available"); script_set_attribute(attribute:"exploit_available", value:"true"); script_set_attribute(attribute:"plugin_type", value:"local"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-4.4-aws"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-4.4-generic"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-4.4-generic-lpae"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-4.4-gke"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-4.4-kvm"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-4.4-lowlatency"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-4.4-raspi2"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-4.4-snapdragon"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-aws"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-generic"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-generic-lpae"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-gke"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-kvm"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-lowlatency"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-raspi2"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-snapdragon"); script_set_attribute(attribute:"cpe", value:"cpe:/o:canonical:ubuntu_linux:16.04"); script_set_attribute(attribute:"vuln_publication_date", value:"2017/06/28"); script_set_attribute(attribute:"patch_publication_date", value:"2017/10/31"); script_set_attribute(attribute:"plugin_publication_date", value:"2017/11/01"); script_set_attribute(attribute:"generated_plugin", value:"current"); script_end_attributes(); script_category(ACT_GATHER_INFO); script_copyright(english:"Ubuntu Security Notice (C) 2017-2019 Canonical, Inc. / NASL script (C) 2017-2019 and is owned by Tenable, Inc. or an Affiliate thereof."); script_family(english:"Ubuntu Local Security Checks"); script_dependencies("ssh_get_info.nasl", "linux_alt_patch_detect.nasl"); script_require_keys("Host/cpu", "Host/Ubuntu", "Host/Ubuntu/release", "Host/Debian/dpkg-l"); exit(0); } include("audit.inc"); include("ubuntu.inc"); include("ksplice.inc"); if ( ! get_kb_item("Host/local_checks_enabled") ) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED); release = get_kb_item("Host/Ubuntu/release"); if ( isnull(release) ) audit(AUDIT_OS_NOT, "Ubuntu"); release = chomp(release); if (! preg(pattern:"^(16\.04)$", string:release)) audit(AUDIT_OS_NOT, "Ubuntu 16.04", "Ubuntu " + release); if ( ! get_kb_item("Host/Debian/dpkg-l") ) audit(AUDIT_PACKAGE_LIST_MISSING); cpu = get_kb_item("Host/cpu"); if (isnull(cpu)) audit(AUDIT_UNKNOWN_ARCH); if ("x86_64" >!< cpu && cpu !~ "^i[3-6]86$") audit(AUDIT_LOCAL_CHECKS_NOT_IMPLEMENTED, "Ubuntu", cpu); if (get_one_kb_item("Host/ksplice/kernel-cves")) { rm_kb_item(name:"Host/uptrack-uname-r"); cve_list = make_list("CVE-2017-10911", "CVE-2017-12153", "CVE-2017-12154", "CVE-2017-12192", "CVE-2017-14051", "CVE-2017-14156", "CVE-2017-14340", "CVE-2017-14489", "CVE-2017-14991", "CVE-2017-15537", "CVE-2017-9984", "CVE-2017-9985"); if (ksplice_cves_check(cve_list)) { audit(AUDIT_PATCH_INSTALLED, "KSplice hotfix for USN-3469-1"); } else { _ubuntu_report = ksplice_reporting_text(); } } flag = 0; if (ubuntu_check(osver:"16.04", pkgname:"linux-image-4.4.0-1009-kvm", pkgver:"4.4.0-1009.14")) flag++; if (ubuntu_check(osver:"16.04", pkgname:"linux-image-4.4.0-1033-gke", pkgver:"4.4.0-1033.33")) flag++; if (ubuntu_check(osver:"16.04", pkgname:"linux-image-4.4.0-1039-aws", pkgver:"4.4.0-1039.48")) flag++; if (ubuntu_check(osver:"16.04", pkgname:"linux-image-4.4.0-1076-raspi2", pkgver:"4.4.0-1076.84")) flag++; if (ubuntu_check(osver:"16.04", pkgname:"linux-image-4.4.0-1078-snapdragon", pkgver:"4.4.0-1078.83")) flag++; if (ubuntu_check(osver:"16.04", pkgname:"linux-image-4.4.0-98-generic", pkgver:"4.4.0-98.121")) flag++; if (ubuntu_check(osver:"16.04", pkgname:"linux-image-4.4.0-98-generic-lpae", pkgver:"4.4.0-98.121")) flag++; if (ubuntu_check(osver:"16.04", pkgname:"linux-image-4.4.0-98-lowlatency", pkgver:"4.4.0-98.121")) flag++; if (ubuntu_check(osver:"16.04", pkgname:"linux-image-aws", pkgver:"4.4.0.1039.41")) flag++; if (ubuntu_check(osver:"16.04", pkgname:"linux-image-generic", pkgver:"4.4.0.98.103")) flag++; if (ubuntu_check(osver:"16.04", pkgname:"linux-image-generic-lpae", pkgver:"4.4.0.98.103")) flag++; if (ubuntu_check(osver:"16.04", pkgname:"linux-image-gke", pkgver:"4.4.0.1033.34")) flag++; if (ubuntu_check(osver:"16.04", pkgname:"linux-image-kvm", pkgver:"4.4.0.1009.9")) flag++; if (ubuntu_check(osver:"16.04", pkgname:"linux-image-lowlatency", pkgver:"4.4.0.98.103")) flag++; if (ubuntu_check(osver:"16.04", pkgname:"linux-image-raspi2", pkgver:"4.4.0.1076.76")) flag++; if (ubuntu_check(osver:"16.04", pkgname:"linux-image-snapdragon", pkgver:"4.4.0.1078.70")) flag++; if (flag) { security_report_v4( port : 0, severity : SECURITY_HOLE, extra : ubuntu_report_get() ); exit(0); } else { tested = ubuntu_pkg_tests_get(); if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested); else audit(AUDIT_PACKAGE_NOT_INSTALLED, "linux-image-4.4-aws / linux-image-4.4-generic / etc"); }
NASL family Ubuntu Local Security Checks NASL id UBUNTU_USN-3754-1.NASL description Ralf Spenneberg discovered that the ext4 implementation in the Linux kernel did not properly validate meta block groups. An attacker with physical access could use this to specially craft an ext4 image that causes a denial of service (system crash). (CVE-2016-10208) It was discovered that an information disclosure vulnerability existed in the ACPI implementation of the Linux kernel. A local attacker could use this to expose sensitive information (kernel memory addresses). (CVE-2017-11472) It was discovered that a buffer overflow existed in the ACPI table parsing implementation in the Linux kernel. A local attacker could use this to construct a malicious ACPI table that, when loaded, caused a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-11473) It was discovered that the generic SCSI driver in the Linux kernel did not properly initialize data returned to user space in some situations. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2017-14991) It was discovered that a race condition existed in the packet fanout implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-15649) Andrey Konovalov discovered that the Ultra Wide Band driver in the Linux kernel did not properly check for an error condition. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16526) Andrey Konovalov discovered that the ALSA subsystem in the Linux kernel contained a use-after-free vulnerability. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16527) Andrey Konovalov discovered that the ALSA subsystem in the Linux kernel did not properly validate USB audio buffer descriptors. A physically proximate attacker could use this cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16529) Andrey Konovalov discovered that the USB subsystem in the Linux kernel did not properly validate USB interface association descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16531) Andrey Konovalov discovered that the usbtest device driver in the Linux kernel did not properly validate endpoint metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16532) Andrey Konovalov discovered that the USB subsystem in the Linux kernel did not properly validate USB HID descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16533) Andrey Konovalov discovered that the USB subsystem in the Linux kernel did not properly validate USB BOS metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16535) Andrey Konovalov discovered that the Conexant cx231xx USB video capture driver in the Linux kernel did not properly validate interface descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16536) Andrey Konovalov discovered that the SoundGraph iMON USB driver in the Linux kernel did not properly validate device metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16537) It was discovered that the DM04/QQBOX USB driver in the Linux kernel did not properly handle device attachment and warm-start. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16538) Andrey Konovalov discovered an out-of-bounds read in the GTCO digitizer USB driver for the Linux kernel. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16643) Andrey Konovalov discovered that the video4linux driver for Hauppauge HD PVR USB devices in the Linux kernel did not properly handle some error conditions. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16644) Andrey Konovalov discovered that the IMS Passenger Control Unit USB driver in the Linux kernel did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16645) Andrey Konovalov discovered that the QMI WWAN USB driver did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16650) It was discovered that the USB Virtual Host Controller Interface (VHCI) driver in the Linux kernel contained an information disclosure vulnerability. A physically proximate attacker could use this to expose sensitive information (kernel memory). (CVE-2017-16911) It was discovered that the USB over IP implementation in the Linux kernel did not validate endpoint numbers. A remote attacker could use this to cause a denial of service (system crash). (CVE-2017-16912) It was discovered that the USB over IP implementation in the Linux kernel did not properly validate CMD_SUBMIT packets. A remote attacker could use this to cause a denial of service (excessive memory consumption). (CVE-2017-16913) It was discovered that the USB over IP implementation in the Linux kernel contained a NULL pointer dereference error. A remote attacker could use this to cause a denial of service (system crash). (CVE-2017-16914) It was discovered that the core USB subsystem in the Linux kernel did not validate the number of configurations and interfaces in a device. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-17558) It was discovered that an integer overflow existed in the perf subsystem of the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-18255) It was discovered that the keyring subsystem in the Linux kernel did not properly prevent a user from creating keyrings for other users. A local attacker could use this cause a denial of service or expose sensitive information. (CVE-2017-18270) Andy Lutomirski and Willy Tarreau discovered that the KVM implementation in the Linux kernel did not properly emulate instructions on the SS segment register. A local attacker in a guest virtual machine could use this to cause a denial of service (guest OS crash) or possibly gain administrative privileges in the guest OS. (CVE-2017-2583) Dmitry Vyukov discovered that the KVM implementation in the Linux kernel improperly emulated certain instructions. A local attacker could use this to obtain sensitive information (kernel memory). (CVE-2017-2584) It was discovered that the KLSI KL5KUSB105 serial-to-USB device driver in the Linux kernel did not properly initialize memory related to logging. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2017-5549) Andrey Konovalov discovered an out-of-bounds access in the IPv6 Generic Routing Encapsulation (GRE) tunneling implementation in the Linux kernel. An attacker could use this to possibly expose sensitive information. (CVE-2017-5897) Andrey Konovalov discovered that the LLC subsytem in the Linux kernel did not properly set up a destructor in certain situations. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-6345) Dmitry Vyukov discovered race conditions in the Infrared (IrDA) subsystem in the Linux kernel. A local attacker could use this to cause a denial of service (deadlock). (CVE-2017-6348) Andy Lutomirski discovered that the KVM implementation in the Linux kernel was vulnerable to a debug exception error when single-stepping through a syscall. A local attacker in a non-Linux guest vm could possibly use this to gain administrative privileges in the guest vm. (CVE-2017-7518) Tuomas Haanpaa and Ari Kauppi discovered that the NFSv2 and NFSv3 server implementations in the Linux kernel did not properly handle certain long RPC replies. A remote attacker could use this to cause a denial of service (system crash). (CVE-2017-7645) Pengfei Wang discovered that a race condition existed in the NXP SAA7164 TV Decoder driver for the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-8831) Pengfei Wang discovered that the Turtle Beach MultiSound audio device driver in the Linux kernel contained race conditions when fetching from the ring-buffer. A local attacker could use this to cause a denial of service (infinite loop). (CVE-2017-9984, CVE-2017-9985) It was discovered that the wait4() system call in the Linux kernel did not properly validate its arguments in some situations. A local attacker could possibly use this to cause a denial of service. (CVE-2018-10087) It was discovered that the kill() system call implementation in the Linux kernel did not properly validate its arguments in some situations. A local attacker could possibly use this to cause a denial of service. (CVE-2018-10124) Wen Xu discovered that the XFS filesystem implementation in the Linux kernel did not properly validate meta-data information. An attacker could use this to construct a malicious xfs image that, when mounted, could cause a denial of service (system crash). (CVE-2018-10323) Zhong Jiang discovered that a use-after-free vulnerability existed in the NUMA memory policy implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-10675) Wen Xu discovered that a buffer overflow existed in the ext4 filesystem implementation in the Linux kernel. An attacker could use this to construct a malicious ext4 image that, when mounted, could cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-10877) Wen Xu discovered that the ext4 filesystem implementation in the Linux kernel did not properly keep meta-data information consistent in some situations. An attacker could use this to construct a malicious ext4 image that, when mounted, could cause a denial of service (system crash). (CVE-2018-10881) Wen Xu discovered that the ext4 filesystem implementation in the Linux kernel did not properly handle corrupted meta data in some situations. An attacker could use this to specially craft an ext4 file system that caused a denial of service (system crash) when mounted. (CVE-2018-1092) Wen Xu discovered that the ext4 filesystem implementation in the Linux kernel did not properly handle corrupted meta data in some situations. An attacker could use this to specially craft an ext4 filesystem that caused a denial of service (system crash) when mounted. (CVE-2018-1093) It was discovered that the cdrom driver in the Linux kernel contained an incorrect bounds check. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2018-10940) Shankara Pailoor discovered that the JFS filesystem implementation in the Linux kernel contained a buffer overflow when handling extended attributes. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-12233) Wen Xu discovered that the XFS filesystem implementation in the Linux kernel did not properly handle an error condition with a corrupted xfs image. An attacker could use this to construct a malicious xfs image that, when mounted, could cause a denial of service (system crash). (CVE-2018-13094) It was discovered that the Linux kernel did not properly handle setgid file creation when performed by a non-member of the group. A local attacker could use this to gain elevated privileges. (CVE-2018-13405) Silvio Cesare discovered that the generic VESA frame buffer driver in the Linux kernel contained an integer overflow. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-13406) Daniel Jiang discovered that a race condition existed in the ipv4 ping socket implementation in the Linux kernel. A local privileged attacker could use this to cause a denial of service (system crash). (CVE-2017-2671) It was discovered that an information leak existed in the generic SCSI driver in the Linux kernel. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2018-1000204) It was discovered that a memory leak existed in the Serial Attached SCSI (SAS) implementation in the Linux kernel. A physically proximate attacker could use this to cause a denial of service (memory exhaustion). (CVE-2018-10021). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues. last seen 2020-06-01 modified 2020-06-02 plugin id 112113 published 2018-08-24 reporter Ubuntu Security Notice (C) 2018-2019 Canonical, Inc. / NASL script (C) 2018-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/112113 title Ubuntu 14.04 LTS : linux vulnerabilities (USN-3754-1) code # # (C) Tenable Network Security, Inc. # # The descriptive text and package checks in this plugin were # extracted from Ubuntu Security Notice USN-3754-1. The text # itself is copyright (C) Canonical, Inc. See # <http://www.ubuntu.com/usn/>. Ubuntu(R) is a registered # trademark of Canonical, Inc. # include("compat.inc"); if (description) { script_id(112113); script_version("1.6"); script_cvs_date("Date: 2019/09/18 12:31:48"); script_cve_id("CVE-2016-10208", "CVE-2017-11472", "CVE-2017-11473", "CVE-2017-14991", "CVE-2017-15649", "CVE-2017-16526", "CVE-2017-16527", "CVE-2017-16529", "CVE-2017-16531", "CVE-2017-16532", "CVE-2017-16533", "CVE-2017-16535", "CVE-2017-16536", "CVE-2017-16537", "CVE-2017-16538", "CVE-2017-16643", "CVE-2017-16644", "CVE-2017-16645", "CVE-2017-16650", "CVE-2017-16911", "CVE-2017-16912", "CVE-2017-16913", "CVE-2017-16914", "CVE-2017-17558", "CVE-2017-18255", "CVE-2017-18270", "CVE-2017-2583", "CVE-2017-2584", "CVE-2017-2671", "CVE-2017-5549", "CVE-2017-5897", "CVE-2017-6345", "CVE-2017-6348", "CVE-2017-7518", "CVE-2017-7645", "CVE-2017-8831", "CVE-2017-9984", "CVE-2017-9985", "CVE-2018-1000204", "CVE-2018-10021", "CVE-2018-10087", "CVE-2018-10124", "CVE-2018-10323", "CVE-2018-10675", "CVE-2018-10877", "CVE-2018-10881", "CVE-2018-1092", "CVE-2018-1093", "CVE-2018-10940", "CVE-2018-12233", "CVE-2018-13094", "CVE-2018-13405", "CVE-2018-13406"); script_xref(name:"USN", value:"3754-1"); script_name(english:"Ubuntu 14.04 LTS : linux vulnerabilities (USN-3754-1)"); script_summary(english:"Checks dpkg output for updated packages."); script_set_attribute( attribute:"synopsis", value: "The remote Ubuntu host is missing one or more security-related patches." ); script_set_attribute( attribute:"description", value: "Ralf Spenneberg discovered that the ext4 implementation in the Linux kernel did not properly validate meta block groups. An attacker with physical access could use this to specially craft an ext4 image that causes a denial of service (system crash). (CVE-2016-10208) It was discovered that an information disclosure vulnerability existed in the ACPI implementation of the Linux kernel. A local attacker could use this to expose sensitive information (kernel memory addresses). (CVE-2017-11472) It was discovered that a buffer overflow existed in the ACPI table parsing implementation in the Linux kernel. A local attacker could use this to construct a malicious ACPI table that, when loaded, caused a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-11473) It was discovered that the generic SCSI driver in the Linux kernel did not properly initialize data returned to user space in some situations. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2017-14991) It was discovered that a race condition existed in the packet fanout implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-15649) Andrey Konovalov discovered that the Ultra Wide Band driver in the Linux kernel did not properly check for an error condition. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16526) Andrey Konovalov discovered that the ALSA subsystem in the Linux kernel contained a use-after-free vulnerability. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16527) Andrey Konovalov discovered that the ALSA subsystem in the Linux kernel did not properly validate USB audio buffer descriptors. A physically proximate attacker could use this cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16529) Andrey Konovalov discovered that the USB subsystem in the Linux kernel did not properly validate USB interface association descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16531) Andrey Konovalov discovered that the usbtest device driver in the Linux kernel did not properly validate endpoint metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16532) Andrey Konovalov discovered that the USB subsystem in the Linux kernel did not properly validate USB HID descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16533) Andrey Konovalov discovered that the USB subsystem in the Linux kernel did not properly validate USB BOS metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16535) Andrey Konovalov discovered that the Conexant cx231xx USB video capture driver in the Linux kernel did not properly validate interface descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16536) Andrey Konovalov discovered that the SoundGraph iMON USB driver in the Linux kernel did not properly validate device metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16537) It was discovered that the DM04/QQBOX USB driver in the Linux kernel did not properly handle device attachment and warm-start. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16538) Andrey Konovalov discovered an out-of-bounds read in the GTCO digitizer USB driver for the Linux kernel. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16643) Andrey Konovalov discovered that the video4linux driver for Hauppauge HD PVR USB devices in the Linux kernel did not properly handle some error conditions. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16644) Andrey Konovalov discovered that the IMS Passenger Control Unit USB driver in the Linux kernel did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16645) Andrey Konovalov discovered that the QMI WWAN USB driver did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16650) It was discovered that the USB Virtual Host Controller Interface (VHCI) driver in the Linux kernel contained an information disclosure vulnerability. A physically proximate attacker could use this to expose sensitive information (kernel memory). (CVE-2017-16911) It was discovered that the USB over IP implementation in the Linux kernel did not validate endpoint numbers. A remote attacker could use this to cause a denial of service (system crash). (CVE-2017-16912) It was discovered that the USB over IP implementation in the Linux kernel did not properly validate CMD_SUBMIT packets. A remote attacker could use this to cause a denial of service (excessive memory consumption). (CVE-2017-16913) It was discovered that the USB over IP implementation in the Linux kernel contained a NULL pointer dereference error. A remote attacker could use this to cause a denial of service (system crash). (CVE-2017-16914) It was discovered that the core USB subsystem in the Linux kernel did not validate the number of configurations and interfaces in a device. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-17558) It was discovered that an integer overflow existed in the perf subsystem of the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-18255) It was discovered that the keyring subsystem in the Linux kernel did not properly prevent a user from creating keyrings for other users. A local attacker could use this cause a denial of service or expose sensitive information. (CVE-2017-18270) Andy Lutomirski and Willy Tarreau discovered that the KVM implementation in the Linux kernel did not properly emulate instructions on the SS segment register. A local attacker in a guest virtual machine could use this to cause a denial of service (guest OS crash) or possibly gain administrative privileges in the guest OS. (CVE-2017-2583) Dmitry Vyukov discovered that the KVM implementation in the Linux kernel improperly emulated certain instructions. A local attacker could use this to obtain sensitive information (kernel memory). (CVE-2017-2584) It was discovered that the KLSI KL5KUSB105 serial-to-USB device driver in the Linux kernel did not properly initialize memory related to logging. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2017-5549) Andrey Konovalov discovered an out-of-bounds access in the IPv6 Generic Routing Encapsulation (GRE) tunneling implementation in the Linux kernel. An attacker could use this to possibly expose sensitive information. (CVE-2017-5897) Andrey Konovalov discovered that the LLC subsytem in the Linux kernel did not properly set up a destructor in certain situations. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-6345) Dmitry Vyukov discovered race conditions in the Infrared (IrDA) subsystem in the Linux kernel. A local attacker could use this to cause a denial of service (deadlock). (CVE-2017-6348) Andy Lutomirski discovered that the KVM implementation in the Linux kernel was vulnerable to a debug exception error when single-stepping through a syscall. A local attacker in a non-Linux guest vm could possibly use this to gain administrative privileges in the guest vm. (CVE-2017-7518) Tuomas Haanpaa and Ari Kauppi discovered that the NFSv2 and NFSv3 server implementations in the Linux kernel did not properly handle certain long RPC replies. A remote attacker could use this to cause a denial of service (system crash). (CVE-2017-7645) Pengfei Wang discovered that a race condition existed in the NXP SAA7164 TV Decoder driver for the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-8831) Pengfei Wang discovered that the Turtle Beach MultiSound audio device driver in the Linux kernel contained race conditions when fetching from the ring-buffer. A local attacker could use this to cause a denial of service (infinite loop). (CVE-2017-9984, CVE-2017-9985) It was discovered that the wait4() system call in the Linux kernel did not properly validate its arguments in some situations. A local attacker could possibly use this to cause a denial of service. (CVE-2018-10087) It was discovered that the kill() system call implementation in the Linux kernel did not properly validate its arguments in some situations. A local attacker could possibly use this to cause a denial of service. (CVE-2018-10124) Wen Xu discovered that the XFS filesystem implementation in the Linux kernel did not properly validate meta-data information. An attacker could use this to construct a malicious xfs image that, when mounted, could cause a denial of service (system crash). (CVE-2018-10323) Zhong Jiang discovered that a use-after-free vulnerability existed in the NUMA memory policy implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-10675) Wen Xu discovered that a buffer overflow existed in the ext4 filesystem implementation in the Linux kernel. An attacker could use this to construct a malicious ext4 image that, when mounted, could cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-10877) Wen Xu discovered that the ext4 filesystem implementation in the Linux kernel did not properly keep meta-data information consistent in some situations. An attacker could use this to construct a malicious ext4 image that, when mounted, could cause a denial of service (system crash). (CVE-2018-10881) Wen Xu discovered that the ext4 filesystem implementation in the Linux kernel did not properly handle corrupted meta data in some situations. An attacker could use this to specially craft an ext4 file system that caused a denial of service (system crash) when mounted. (CVE-2018-1092) Wen Xu discovered that the ext4 filesystem implementation in the Linux kernel did not properly handle corrupted meta data in some situations. An attacker could use this to specially craft an ext4 filesystem that caused a denial of service (system crash) when mounted. (CVE-2018-1093) It was discovered that the cdrom driver in the Linux kernel contained an incorrect bounds check. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2018-10940) Shankara Pailoor discovered that the JFS filesystem implementation in the Linux kernel contained a buffer overflow when handling extended attributes. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-12233) Wen Xu discovered that the XFS filesystem implementation in the Linux kernel did not properly handle an error condition with a corrupted xfs image. An attacker could use this to construct a malicious xfs image that, when mounted, could cause a denial of service (system crash). (CVE-2018-13094) It was discovered that the Linux kernel did not properly handle setgid file creation when performed by a non-member of the group. A local attacker could use this to gain elevated privileges. (CVE-2018-13405) Silvio Cesare discovered that the generic VESA frame buffer driver in the Linux kernel contained an integer overflow. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-13406) Daniel Jiang discovered that a race condition existed in the ipv4 ping socket implementation in the Linux kernel. A local privileged attacker could use this to cause a denial of service (system crash). (CVE-2017-2671) It was discovered that an information leak existed in the generic SCSI driver in the Linux kernel. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2018-1000204) It was discovered that a memory leak existed in the Serial Attached SCSI (SAS) implementation in the Linux kernel. A physically proximate attacker could use this to cause a denial of service (memory exhaustion). (CVE-2018-10021). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues." ); script_set_attribute( attribute:"see_also", value:"https://usn.ubuntu.com/3754-1/" ); script_set_attribute(attribute:"solution", value:"Update the affected packages."); script_set_cvss_base_vector("CVSS2#AV:N/AC:L/Au:N/C:N/I:N/A:C"); script_set_cvss_temporal_vector("CVSS2#E:POC/RL:OF/RC:C"); script_set_cvss3_base_vector("CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H"); script_set_cvss3_temporal_vector("CVSS:3.0/E:P/RL:O/RC:C"); script_set_attribute(attribute:"exploitability_ease", value:"Exploits are available"); script_set_attribute(attribute:"exploit_available", value:"true"); script_set_attribute(attribute:"plugin_type", value:"local"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-3.13-generic"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-3.13-generic-lpae"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-3.13-lowlatency"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-generic"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-generic-lpae"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-lowlatency"); script_set_attribute(attribute:"cpe", value:"cpe:/o:canonical:ubuntu_linux:14.04"); script_set_attribute(attribute:"vuln_publication_date", value:"2017/01/15"); script_set_attribute(attribute:"patch_publication_date", value:"2018/08/24"); script_set_attribute(attribute:"plugin_publication_date", value:"2018/08/24"); script_set_attribute(attribute:"generated_plugin", value:"current"); script_end_attributes(); script_category(ACT_GATHER_INFO); script_copyright(english:"Ubuntu Security Notice (C) 2018-2019 Canonical, Inc. / NASL script (C) 2018-2019 and is owned by Tenable, Inc. or an Affiliate thereof."); script_family(english:"Ubuntu Local Security Checks"); script_dependencies("ssh_get_info.nasl", "linux_alt_patch_detect.nasl"); script_require_keys("Host/cpu", "Host/Ubuntu", "Host/Ubuntu/release", "Host/Debian/dpkg-l"); exit(0); } include("audit.inc"); include("ubuntu.inc"); include("ksplice.inc"); if ( ! get_kb_item("Host/local_checks_enabled") ) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED); release = get_kb_item("Host/Ubuntu/release"); if ( isnull(release) ) audit(AUDIT_OS_NOT, "Ubuntu"); release = chomp(release); if (! preg(pattern:"^(14\.04)$", string:release)) audit(AUDIT_OS_NOT, "Ubuntu 14.04", "Ubuntu " + release); if ( ! get_kb_item("Host/Debian/dpkg-l") ) audit(AUDIT_PACKAGE_LIST_MISSING); cpu = get_kb_item("Host/cpu"); if (isnull(cpu)) audit(AUDIT_UNKNOWN_ARCH); if ("x86_64" >!< cpu && cpu !~ "^i[3-6]86$") audit(AUDIT_LOCAL_CHECKS_NOT_IMPLEMENTED, "Ubuntu", cpu); if (get_one_kb_item("Host/ksplice/kernel-cves")) { rm_kb_item(name:"Host/uptrack-uname-r"); cve_list = make_list("CVE-2016-10208", "CVE-2017-11472", "CVE-2017-11473", "CVE-2017-14991", "CVE-2017-15649", "CVE-2017-16526", "CVE-2017-16527", "CVE-2017-16529", "CVE-2017-16531", "CVE-2017-16532", "CVE-2017-16533", "CVE-2017-16535", "CVE-2017-16536", "CVE-2017-16537", "CVE-2017-16538", "CVE-2017-16643", "CVE-2017-16644", "CVE-2017-16645", "CVE-2017-16650", "CVE-2017-16911", "CVE-2017-16912", "CVE-2017-16913", "CVE-2017-16914", "CVE-2017-17558", "CVE-2017-18255", "CVE-2017-18270", "CVE-2017-2583", "CVE-2017-2584", "CVE-2017-2671", "CVE-2017-5549", "CVE-2017-5897", "CVE-2017-6345", "CVE-2017-6348", "CVE-2017-7518", "CVE-2017-7645", "CVE-2017-8831", "CVE-2017-9984", "CVE-2017-9985", "CVE-2018-1000204", "CVE-2018-10021", "CVE-2018-10087", "CVE-2018-10124", "CVE-2018-10323", "CVE-2018-10675", "CVE-2018-10877", "CVE-2018-10881", "CVE-2018-1092", "CVE-2018-1093", "CVE-2018-10940", "CVE-2018-12233", "CVE-2018-13094", "CVE-2018-13405", "CVE-2018-13406"); if (ksplice_cves_check(cve_list)) { audit(AUDIT_PATCH_INSTALLED, "KSplice hotfix for USN-3754-1"); } else { _ubuntu_report = ksplice_reporting_text(); } } flag = 0; if (ubuntu_check(osver:"14.04", pkgname:"linux-image-3.13.0-157-generic", pkgver:"3.13.0-157.207")) flag++; if (ubuntu_check(osver:"14.04", pkgname:"linux-image-3.13.0-157-generic-lpae", pkgver:"3.13.0-157.207")) flag++; if (ubuntu_check(osver:"14.04", pkgname:"linux-image-3.13.0-157-lowlatency", pkgver:"3.13.0-157.207")) flag++; if (ubuntu_check(osver:"14.04", pkgname:"linux-image-generic", pkgver:"3.13.0.157.167")) flag++; if (ubuntu_check(osver:"14.04", pkgname:"linux-image-generic-lpae", pkgver:"3.13.0.157.167")) flag++; if (ubuntu_check(osver:"14.04", pkgname:"linux-image-lowlatency", pkgver:"3.13.0.157.167")) flag++; if (flag) { security_report_v4( port : 0, severity : SECURITY_HOLE, extra : ubuntu_report_get() ); exit(0); } else { tested = ubuntu_pkg_tests_get(); if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested); else audit(AUDIT_PACKAGE_NOT_INSTALLED, "linux-image-3.13-generic / linux-image-3.13-generic-lpae / etc"); }
NASL family Ubuntu Local Security Checks NASL id UBUNTU_USN-3469-2.NASL description USN-3469-1 fixed vulnerabilities in the Linux kernel for Ubuntu 16.04 LTS. This update provides the corresponding updates for the Linux Hardware Enablement (HWE) kernel from Ubuntu 16.04 LTS for Ubuntu 14.04 LTS. Anthony Perard discovered that the Xen virtual block driver did not properly initialize some data structures before passing them to user space. A local attacker in a guest VM could use this to expose sensitive information from the host OS or other guest VMs. (CVE-2017-10911) Bo Zhang discovered that the netlink wireless configuration interface in the Linux kernel did not properly validate attributes when handling certain requests. A local attacker with the CAP_NET_ADMIN could use this to cause a denial of service (system crash). (CVE-2017-12153) It was discovered that the nested KVM implementation in the Linux kernel in some situations did not properly prevent second level guests from reading and writing the hardware CR8 register. A local attacker in a guest could use this to cause a denial of service (system crash). It was discovered that the key management subsystem in the Linux kernel did not properly restrict key reads on negatively instantiated keys. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-12192) It was discovered that an integer overflow existed in the sysfs interface for the QLogic 24xx+ series SCSI driver in the Linux kernel. A local privileged attacker could use this to cause a denial of service (system crash). (CVE-2017-14051) It was discovered that the ATI Radeon framebuffer driver in the Linux kernel did not properly initialize a data structure returned to user space. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2017-14156) Dave Chinner discovered that the XFS filesystem did not enforce that the realtime inode flag was settable only on filesystems on a realtime device. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-14340) ChunYu Wang discovered that the iSCSI transport implementation in the Linux kernel did not properly validate data structures. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-14489) It was discovered that the generic SCSI driver in the Linux kernel did not properly initialize data returned to user space in some situations. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2017-14991) Dmitry Vyukov discovered that the Floating Point Unit (fpu) subsystem in the Linux kernel did not properly handle attempts to set reserved bits in a task last seen 2020-06-01 modified 2020-06-02 plugin id 104321 published 2017-11-01 reporter Ubuntu Security Notice (C) 2017-2019 Canonical, Inc. / NASL script (C) 2017-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/104321 title Ubuntu 14.04 LTS : linux-lts-xenial vulnerabilities (USN-3469-2) code # # (C) Tenable Network Security, Inc. # # The descriptive text and package checks in this plugin were # extracted from Ubuntu Security Notice USN-3469-2. The text # itself is copyright (C) Canonical, Inc. See # <http://www.ubuntu.com/usn/>. Ubuntu(R) is a registered # trademark of Canonical, Inc. # include("compat.inc"); if (description) { script_id(104321); script_version("3.8"); script_cvs_date("Date: 2019/09/18 12:31:47"); script_cve_id("CVE-2017-10911", "CVE-2017-12153", "CVE-2017-12154", "CVE-2017-12192", "CVE-2017-14051", "CVE-2017-14156", "CVE-2017-14340", "CVE-2017-14489", "CVE-2017-14991", "CVE-2017-15537", "CVE-2017-9984", "CVE-2017-9985"); script_xref(name:"USN", value:"3469-2"); script_name(english:"Ubuntu 14.04 LTS : linux-lts-xenial vulnerabilities (USN-3469-2)"); script_summary(english:"Checks dpkg output for updated packages."); script_set_attribute( attribute:"synopsis", value: "The remote Ubuntu host is missing one or more security-related patches." ); script_set_attribute( attribute:"description", value: "USN-3469-1 fixed vulnerabilities in the Linux kernel for Ubuntu 16.04 LTS. This update provides the corresponding updates for the Linux Hardware Enablement (HWE) kernel from Ubuntu 16.04 LTS for Ubuntu 14.04 LTS. Anthony Perard discovered that the Xen virtual block driver did not properly initialize some data structures before passing them to user space. A local attacker in a guest VM could use this to expose sensitive information from the host OS or other guest VMs. (CVE-2017-10911) Bo Zhang discovered that the netlink wireless configuration interface in the Linux kernel did not properly validate attributes when handling certain requests. A local attacker with the CAP_NET_ADMIN could use this to cause a denial of service (system crash). (CVE-2017-12153) It was discovered that the nested KVM implementation in the Linux kernel in some situations did not properly prevent second level guests from reading and writing the hardware CR8 register. A local attacker in a guest could use this to cause a denial of service (system crash). It was discovered that the key management subsystem in the Linux kernel did not properly restrict key reads on negatively instantiated keys. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-12192) It was discovered that an integer overflow existed in the sysfs interface for the QLogic 24xx+ series SCSI driver in the Linux kernel. A local privileged attacker could use this to cause a denial of service (system crash). (CVE-2017-14051) It was discovered that the ATI Radeon framebuffer driver in the Linux kernel did not properly initialize a data structure returned to user space. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2017-14156) Dave Chinner discovered that the XFS filesystem did not enforce that the realtime inode flag was settable only on filesystems on a realtime device. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-14340) ChunYu Wang discovered that the iSCSI transport implementation in the Linux kernel did not properly validate data structures. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-14489) It was discovered that the generic SCSI driver in the Linux kernel did not properly initialize data returned to user space in some situations. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2017-14991) Dmitry Vyukov discovered that the Floating Point Unit (fpu) subsystem in the Linux kernel did not properly handle attempts to set reserved bits in a task's extended state (xstate) area. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-15537) Pengfei Wang discovered that the Turtle Beach MultiSound audio device driver in the Linux kernel contained race conditions when fetching from the ring-buffer. A local attacker could use this to cause a denial of service (infinite loop). (CVE-2017-9984, CVE-2017-9985). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues." ); script_set_attribute( attribute:"see_also", value:"https://usn.ubuntu.com/3469-2/" ); script_set_attribute(attribute:"solution", value:"Update the affected packages."); script_set_cvss_base_vector("CVSS2#AV:L/AC:L/Au:N/C:C/I:C/A:C"); script_set_cvss_temporal_vector("CVSS2#E:POC/RL:OF/RC:C"); script_set_cvss3_base_vector("CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H"); script_set_cvss3_temporal_vector("CVSS:3.0/E:P/RL:O/RC:C"); script_set_attribute(attribute:"exploitability_ease", value:"Exploits are available"); script_set_attribute(attribute:"exploit_available", value:"true"); script_set_attribute(attribute:"plugin_type", value:"local"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-4.4-generic"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-4.4-generic-lpae"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-4.4-lowlatency"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-generic-lpae-lts-xenial"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-generic-lts-xenial"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-lowlatency-lts-xenial"); script_set_attribute(attribute:"cpe", value:"cpe:/o:canonical:ubuntu_linux:14.04"); script_set_attribute(attribute:"vuln_publication_date", value:"2017/06/28"); script_set_attribute(attribute:"patch_publication_date", value:"2017/10/31"); script_set_attribute(attribute:"plugin_publication_date", value:"2017/11/01"); script_set_attribute(attribute:"generated_plugin", value:"current"); script_end_attributes(); script_category(ACT_GATHER_INFO); script_copyright(english:"Ubuntu Security Notice (C) 2017-2019 Canonical, Inc. / NASL script (C) 2017-2019 and is owned by Tenable, Inc. or an Affiliate thereof."); script_family(english:"Ubuntu Local Security Checks"); script_dependencies("ssh_get_info.nasl", "linux_alt_patch_detect.nasl"); script_require_keys("Host/cpu", "Host/Ubuntu", "Host/Ubuntu/release", "Host/Debian/dpkg-l"); exit(0); } include("audit.inc"); include("ubuntu.inc"); include("ksplice.inc"); if ( ! get_kb_item("Host/local_checks_enabled") ) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED); release = get_kb_item("Host/Ubuntu/release"); if ( isnull(release) ) audit(AUDIT_OS_NOT, "Ubuntu"); release = chomp(release); if (! preg(pattern:"^(14\.04)$", string:release)) audit(AUDIT_OS_NOT, "Ubuntu 14.04", "Ubuntu " + release); if ( ! get_kb_item("Host/Debian/dpkg-l") ) audit(AUDIT_PACKAGE_LIST_MISSING); cpu = get_kb_item("Host/cpu"); if (isnull(cpu)) audit(AUDIT_UNKNOWN_ARCH); if ("x86_64" >!< cpu && cpu !~ "^i[3-6]86$") audit(AUDIT_LOCAL_CHECKS_NOT_IMPLEMENTED, "Ubuntu", cpu); if (get_one_kb_item("Host/ksplice/kernel-cves")) { rm_kb_item(name:"Host/uptrack-uname-r"); cve_list = make_list("CVE-2017-10911", "CVE-2017-12153", "CVE-2017-12154", "CVE-2017-12192", "CVE-2017-14051", "CVE-2017-14156", "CVE-2017-14340", "CVE-2017-14489", "CVE-2017-14991", "CVE-2017-15537", "CVE-2017-9984", "CVE-2017-9985"); if (ksplice_cves_check(cve_list)) { audit(AUDIT_PATCH_INSTALLED, "KSplice hotfix for USN-3469-2"); } else { _ubuntu_report = ksplice_reporting_text(); } } flag = 0; if (ubuntu_check(osver:"14.04", pkgname:"linux-image-4.4.0-98-generic", pkgver:"4.4.0-98.121~14.04.1")) flag++; if (ubuntu_check(osver:"14.04", pkgname:"linux-image-4.4.0-98-generic-lpae", pkgver:"4.4.0-98.121~14.04.1")) flag++; if (ubuntu_check(osver:"14.04", pkgname:"linux-image-4.4.0-98-lowlatency", pkgver:"4.4.0-98.121~14.04.1")) flag++; if (ubuntu_check(osver:"14.04", pkgname:"linux-image-generic-lpae-lts-xenial", pkgver:"4.4.0.98.82")) flag++; if (ubuntu_check(osver:"14.04", pkgname:"linux-image-generic-lts-xenial", pkgver:"4.4.0.98.82")) flag++; if (ubuntu_check(osver:"14.04", pkgname:"linux-image-lowlatency-lts-xenial", pkgver:"4.4.0.98.82")) flag++; if (flag) { security_report_v4( port : 0, severity : SECURITY_HOLE, extra : ubuntu_report_get() ); exit(0); } else { tested = ubuntu_pkg_tests_get(); if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested); else audit(AUDIT_PACKAGE_NOT_INSTALLED, "linux-image-4.4-generic / linux-image-4.4-generic-lpae / etc"); }
NASL family Huawei Local Security Checks NASL id EULEROS_SA-2019-1530.NASL description According to the versions of the kernel packages installed, the EulerOS Virtualization for ARM 64 installation on the remote host is affected by the following vulnerabilities : - The acpi_smbus_hc_add function in drivers/acpi/sbshc.c in the Linux kernel through 4.14.15 allows local users to obtain sensitive address information by reading dmesg data from an SBS HC printk call.(CVE-2018-5750i1/4%0 - An issue was discovered in the btrfs filesystem code in the Linux kernel. A use-after-free is possible in try_merge_free_space() when mounting a crafted btrfs image due to a lack of chunk type flag checks in btrfs_check_chunk_valid() in the fs/btrfs/volumes.c function. This could lead to a denial of service or other unspecified impact.(CVE-2018-14611i1/4%0 - A flaw was found in the way the Linux kernel visor driver handles certain invalid USB device descriptors. The driver assumes that the device always has at least one bulk OUT endpoint. By using a specially crafted USB device (without a bulk OUT endpoint), an unprivileged user with physical access could trigger a kernel NULL-pointer dereference and cause a system panic (denial of service).(CVE-2015-7566i1/4%0 - It was found that the RFC 5961 challenge ACK rate limiting as implemented in the Linux kernel last seen 2020-03-19 modified 2019-05-14 plugin id 124983 published 2019-05-14 reporter This script is Copyright (C) 2019-2020 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/124983 title EulerOS Virtualization for ARM 64 3.0.1.0 : kernel (EulerOS-SA-2019-1530) code # # (C) Tenable Network Security, Inc. # include("compat.inc"); if (description) { script_id(124983); script_version("1.20"); script_set_attribute(attribute:"plugin_modification_date", value:"2020/03/19"); script_cve_id( "CVE-2013-6380", "CVE-2014-4157", "CVE-2014-4654", "CVE-2014-9585", "CVE-2015-2041", "CVE-2015-7566", "CVE-2015-8956", "CVE-2016-5696", "CVE-2016-9588", "CVE-2017-14051", "CVE-2017-14106", "CVE-2017-15299", "CVE-2017-15868", "CVE-2017-16533", "CVE-2017-7616", "CVE-2017-9984", "CVE-2018-10880", "CVE-2018-13053", "CVE-2018-14611", "CVE-2018-5750" ); script_bugtraq_id( 63887, 68083, 68162, 71990, 72729 ); script_name(english:"EulerOS Virtualization for ARM 64 3.0.1.0 : kernel (EulerOS-SA-2019-1530)"); script_summary(english:"Checks the rpm output for the updated packages."); script_set_attribute(attribute:"synopsis", value: "The remote EulerOS Virtualization for ARM 64 host is missing multiple security updates."); script_set_attribute(attribute:"description", value: "According to the versions of the kernel packages installed, the EulerOS Virtualization for ARM 64 installation on the remote host is affected by the following vulnerabilities : - The acpi_smbus_hc_add function in drivers/acpi/sbshc.c in the Linux kernel through 4.14.15 allows local users to obtain sensitive address information by reading dmesg data from an SBS HC printk call.(CVE-2018-5750i1/4%0 - An issue was discovered in the btrfs filesystem code in the Linux kernel. A use-after-free is possible in try_merge_free_space() when mounting a crafted btrfs image due to a lack of chunk type flag checks in btrfs_check_chunk_valid() in the fs/btrfs/volumes.c function. This could lead to a denial of service or other unspecified impact.(CVE-2018-14611i1/4%0 - A flaw was found in the way the Linux kernel visor driver handles certain invalid USB device descriptors. The driver assumes that the device always has at least one bulk OUT endpoint. By using a specially crafted USB device (without a bulk OUT endpoint), an unprivileged user with physical access could trigger a kernel NULL-pointer dereference and cause a system panic (denial of service).(CVE-2015-7566i1/4%0 - It was found that the RFC 5961 challenge ACK rate limiting as implemented in the Linux kernel's networking subsystem allowed an off-path attacker to leak certain information about a given connection by creating congestion on the global challenge ACK rate limit counter and then measuring the changes by probing packets. An off-path attacker could use this flaw to either terminate TCP connection and/or inject payload into non-secured TCP connection between two endpoints on the network.(CVE-2016-5696i1/4%0 - It was found that the Bluebooth Network Encapsulation Protocol (BNEP) implementation did not validate the type of second socket passed to the BNEPCONNADD ioctl(), which could lead to memory corruption. A local user with the CAP_NET_ADMIN capability can use this for denial of service (crash or data corruption) or possibly for privilege escalation. Due to the nature of the flaw, privilege escalation cannot be fully ruled out, although we feel it is unlikely.(CVE-2017-15868i1/4%0 - A vulnerability was found in the key management subsystem of the Linux kernel. An update on an uninstantiated key could cause a kernel panic, leading to denial of service (DoS).(CVE-2017-15299i1/4%0 - The rfcomm_sock_bind function in net/bluetooth/rfcomm/sock.c in the Linux kernel before 4.2 allows local users to obtain sensitive information or cause a denial of service (NULL pointer dereference) via vectors involving a bind system call on a Bluetooth RFCOMM socket.(CVE-2015-8956i1/4%0 - arch/mips/include/asm/thread_info.h in the Linux kernel before 3.14.8 on the MIPS platform does not configure _TIF_SECCOMP checks on the fast system-call path, which allows local users to bypass intended PR_SET_SECCOMP restrictions by executing a crafted application without invoking a trace or audit subsystem.(CVE-2014-4157i1/4%0 - A flaw was found in the Linux kernel's ext4 filesystem code. A stack-out-of-bounds write in ext4_update_inline_data() is possible when mounting and writing to a crafted ext4 image. An attacker could use this to cause a system crash and a denial of service.(CVE-2018-10880i1/4%0 - The aac_send_raw_srb function in drivers/scsi/aacraid/commctrl.c in the Linux kernel through 3.12.1 does not properly validate a certain size value, which allows local users to cause a denial of service (invalid pointer dereference) or possibly have unspecified other impact via an FSACTL_SEND_RAW_SRB ioctl call that triggers a crafted SRB command.(CVE-2013-6380i1/4%0 - Linux kernel built with the KVM visualization support (CONFIG_KVM), with nested visualization(nVMX) feature enabled(nested=1), is vulnerable to an uncaught exception issue. It could occur if an L2 guest was to throw an exception which is not handled by an L1 guest.(CVE-2016-9588i1/4%0 - A flaw was found in the alarm_timer_nsleep() function in kernel/time/alarmtimer.c in the Linux kernel. The ktime_add_safe() function is not used and an integer overflow can happen causing an alarm not to fire if using a large relative timeout.(CVE-2018-13053i1/4%0 - net/llc/sysctl_net_llc.c in the Linux kernel before 3.19 uses an incorrect data type in a sysctl table, which allows local users to obtain potentially sensitive information from kernel memory or possibly have unspecified other impact by accessing a sysctl entry.(CVE-2015-2041i1/4%0 - Incorrect error handling in the set_mempolicy() and mbind() compat syscalls in 'mm/mempolicy.c' in the Linux kernel allows local users to obtain sensitive information from uninitialized stack data by triggering failure of a certain bitmap operation.(CVE-2017-7616i1/4%0 - The snd_msnd_interrupt function in sound/isa/msnd/msnd_pinnacle.c in the Linux kernel through 4.11.7 allows local users to cause a denial of service (over-boundary access) or possibly have unspecified other impact by changing the value of a message queue head pointer between two kernel reads of that value, aka a 'double fetch' vulnerability.(CVE-2017-9984i1/4%0 - An integer overflow was discovered in the qla2x00_sysfs_write_optrom_ctl function in drivers/scsi/qla2xxx/qla_attr.c in the Linux kernel through 4.12.10. This flaw allows local users to cause a denial of service (memory corruption and system crash) by leveraging root access.(CVE-2017-14051i1/4%0 - A use-after-free flaw was found in the way the Linux kernel's Advanced Linux Sound Architecture (ALSA) implementation handled user controls. A local, privileged user could use this flaw to crash the system.(CVE-2014-4654i1/4%0 - An information leak flaw was found in the way the Linux kernel's Virtual Dynamic Shared Object (vDSO) implementation performed address randomization. A local, unprivileged user could use this flaw to leak kernel memory addresses to user-space.(CVE-2014-9585i1/4%0 - The usbhid_parse function in drivers/hid/usbhid/hid-core.c in the Linux kernel, before 4.13.8, allows local users to cause a denial of service (out-of-bounds read and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16533i1/4%0 - A divide-by-zero vulnerability was found in the __tcp_select_window function in the Linux kernel. This can result in a kernel panic causing a local denial of service.(CVE-2017-14106i1/4%0 Note that Tenable Network Security has extracted the preceding description block directly from the EulerOS security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues."); # https://developer.huaweicloud.com/ict/en/site-euleros/euleros/security-advisories/EulerOS-SA-2019-1530 script_set_attribute(attribute:"see_also", value:"http://www.nessus.org/u?1b19f2a9"); script_set_attribute(attribute:"solution", value: "Update the affected kernel packages."); script_set_cvss_base_vector("CVSS2#AV:L/AC:L/Au:N/C:C/I:C/A:C"); script_set_cvss_temporal_vector("CVSS2#E:POC/RL:OF/RC:C"); script_set_cvss3_base_vector("CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H"); script_set_cvss3_temporal_vector("CVSS:3.0/E:P/RL:O/RC:C"); script_set_attribute(attribute:"cvss_score_source", value:"CVE-2017-9984"); script_set_attribute(attribute:"exploitability_ease", value:"Exploits are available"); script_set_attribute(attribute:"exploit_available", value:"true"); script_set_attribute(attribute:"patch_publication_date", value:"2019/05/09"); script_set_attribute(attribute:"plugin_publication_date", value:"2019/05/14"); script_set_attribute(attribute:"plugin_type", value:"local"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:huawei:euleros:kernel"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:huawei:euleros:kernel-devel"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:huawei:euleros:kernel-headers"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:huawei:euleros:kernel-tools"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:huawei:euleros:kernel-tools-libs"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:huawei:euleros:kernel-tools-libs-devel"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:huawei:euleros:perf"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:huawei:euleros:python-perf"); script_set_attribute(attribute:"cpe", value:"cpe:/o:huawei:euleros:uvp:3.0.1.0"); script_set_attribute(attribute:"generated_plugin", value:"current"); script_end_attributes(); script_category(ACT_GATHER_INFO); script_family(english:"Huawei Local Security Checks"); script_copyright(english:"This script is Copyright (C) 2019-2020 and is owned by Tenable, Inc. or an Affiliate thereof."); script_dependencies("ssh_get_info.nasl"); script_require_keys("Host/local_checks_enabled", "Host/cpu", "Host/EulerOS/release", "Host/EulerOS/rpm-list", "Host/EulerOS/uvp_version"); exit(0); } include("audit.inc"); include("global_settings.inc"); include("rpm.inc"); if (!get_kb_item("Host/local_checks_enabled")) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED); release = get_kb_item("Host/EulerOS/release"); if (isnull(release) || release !~ "^EulerOS") audit(AUDIT_OS_NOT, "EulerOS"); uvp = get_kb_item("Host/EulerOS/uvp_version"); if (uvp != "3.0.1.0") audit(AUDIT_OS_NOT, "EulerOS Virtualization 3.0.1.0"); if (!get_kb_item("Host/EulerOS/rpm-list")) audit(AUDIT_PACKAGE_LIST_MISSING); cpu = get_kb_item("Host/cpu"); if (isnull(cpu)) audit(AUDIT_UNKNOWN_ARCH); if ("x86_64" >!< cpu && cpu !~ "^i[3-6]86$" && "aarch64" >!< cpu) audit(AUDIT_LOCAL_CHECKS_NOT_IMPLEMENTED, "EulerOS", cpu); if ("aarch64" >!< cpu) audit(AUDIT_ARCH_NOT, "aarch64", cpu); flag = 0; pkgs = ["kernel-4.19.28-1.2.117", "kernel-devel-4.19.28-1.2.117", "kernel-headers-4.19.28-1.2.117", "kernel-tools-4.19.28-1.2.117", "kernel-tools-libs-4.19.28-1.2.117", "kernel-tools-libs-devel-4.19.28-1.2.117", "perf-4.19.28-1.2.117", "python-perf-4.19.28-1.2.117"]; foreach (pkg in pkgs) if (rpm_check(release:"EulerOS-2.0", reference:pkg)) flag++; if (flag) { security_report_v4( port : 0, severity : SECURITY_HOLE, extra : rpm_report_get() ); exit(0); } else { tested = pkg_tests_get(); if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested); else audit(AUDIT_PACKAGE_NOT_INSTALLED, "kernel"); }
References
- http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=20e2b791796bd68816fa115f12be5320de2b8021
- http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=20e2b791796bd68816fa115f12be5320de2b8021
- http://www.securityfocus.com/bid/99314
- http://www.securityfocus.com/bid/99314
- https://bugzilla.kernel.org/show_bug.cgi?id=196131
- https://bugzilla.kernel.org/show_bug.cgi?id=196131
- https://github.com/torvalds/linux/commit/20e2b791796bd68816fa115f12be5320de2b8021
- https://github.com/torvalds/linux/commit/20e2b791796bd68816fa115f12be5320de2b8021
- https://usn.ubuntu.com/3754-1/
- https://usn.ubuntu.com/3754-1/