Vulnerabilities > CVE-2017-8710 - XXE vulnerability in Microsoft Windows 7 and Windows Server 2008
Attack vector
LOCAL Attack complexity
LOW Privileges required
NONE Confidentiality impact
HIGH Integrity impact
NONE Availability impact
NONE Summary
The Microsoft Common Console Document (.msc) in Microsoft Windows 7 SP1, Windows Server 2008 SP2 and R2 SP1 allows an attacker to read arbitrary files via an XML external entity (XXE) declaration, due to the way that the Microsoft Common Console Document (.msc) parses XML input containing a reference to an external entity, aka "Windows Information Disclosure Vulnerability".
Vulnerable Configurations
Part | Description | Count |
---|---|---|
OS | 4 |
Common Weakness Enumeration (CWE)
Nessus
NASL family Windows : Microsoft Bulletins NASL id SMB_NT_MS17_SEP_4038777.NASL description The remote Windows host is missing security update 4038779 or cumulative update 4038777. It is, therefore, affected by multiple vulnerabilities : - A race condition that could lead to a remote code execution vulnerability exists in NetBT Session Services when NetBT fails to maintain certain sequencing requirements. (CVE-2017-0161) - A spoofing vulnerability exists in Microsoft last seen 2020-05-31 modified 2017-09-12 plugin id 103127 published 2017-09-12 reporter This script is Copyright (C) 2017-2020 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/103127 title Windows 7 and Windows Server 2008 R2 September 2017 Security Updates code # # (C) Tenable Network Security, Inc. # # The descriptive text and package checks in this plugin were # extracted from the Microsoft Security Updates API. The text # itself is copyright (C) Microsoft Corporation. # include("compat.inc"); if (description) { script_id(103127); script_version("1.22"); script_set_attribute(attribute:"plugin_modification_date", value:"2020/05/28"); script_cve_id( "CVE-2017-0161", "CVE-2017-8529", "CVE-2017-8628", "CVE-2017-8675", "CVE-2017-8676", "CVE-2017-8677", "CVE-2017-8678", "CVE-2017-8679", "CVE-2017-8680", "CVE-2017-8681", "CVE-2017-8682", "CVE-2017-8683", "CVE-2017-8684", "CVE-2017-8685", "CVE-2017-8687", "CVE-2017-8688", "CVE-2017-8695", "CVE-2017-8696", "CVE-2017-8699", "CVE-2017-8707", "CVE-2017-8708", "CVE-2017-8709", "CVE-2017-8710", "CVE-2017-8719", "CVE-2017-8720", "CVE-2017-8733", "CVE-2017-8736", "CVE-2017-8741", "CVE-2017-8747", "CVE-2017-8748", "CVE-2017-8749", "CVE-2017-8750" ); script_bugtraq_id( 98953, 100720, 100722, 100724, 100727, 100728, 100736, 100737, 100742, 100743, 100744, 100752, 100755, 100756, 100764, 100765, 100766, 100767, 100769, 100770, 100771, 100772, 100773, 100780, 100781, 100782, 100783, 100790, 100791, 100792, 100793, 100803, 100804 ); script_xref(name:"MSKB", value:"4038779"); script_xref(name:"MSFT", value:"MS17-4038779"); script_xref(name:"MSKB", value:"4038777"); script_xref(name:"MSFT", value:"MS17-4038777"); script_name(english:"Windows 7 and Windows Server 2008 R2 September 2017 Security Updates"); script_summary(english:"Checks for rollup."); script_set_attribute(attribute:"synopsis", value: "The remote Windows host is affected by multiple vulnerabilities."); script_set_attribute(attribute:"description", value: "The remote Windows host is missing security update 4038779 or cumulative update 4038777. It is, therefore, affected by multiple vulnerabilities : - A race condition that could lead to a remote code execution vulnerability exists in NetBT Session Services when NetBT fails to maintain certain sequencing requirements. (CVE-2017-0161) - A spoofing vulnerability exists in Microsoft's implementation of the Bluetooth stack. An attacker who successfully exploited this vulnerability could perform a man-in-the-middle attack and force a user's computer to unknowingly route traffic through the attacker's computer. The attacker can then monitor and read the traffic before sending it on to the intended recipient. (CVE-2017-8628) - An elevation of privilege vulnerability exists in Windows when the Windows kernel-mode driver fails to properly handle objects in memory. An attacker who successfully exploited this vulnerability could run arbitrary code in kernel mode. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. To exploit this vulnerability, an attacker would first have to log on to the system. An attacker could then run a specially crafted application that could exploit the vulnerability and take control of an affected system. The update addresses this vulnerability by correcting how the Windows kernel-mode driver handles objects in memory. (CVE-2017-8675) - An information disclosure vulnerability exists in the way that the Windows Graphics Device Interface (GDI) handles objects in memory, allowing an attacker to retrieve information from a targeted system. By itself, the information disclosure does not allow arbitrary code execution; however, it could allow arbitrary code to be run if the attacker uses it in combination with another vulnerability. (CVE-2017-8676) - A remote code execution vulnerability exists when the Windows font library improperly handles specially crafted embedded fonts. An attacker who successfully exploited this vulnerability could take control of the affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. (CVE-2017-8682) - An information disclosure vulnerability exists when the Microsoft Windows Graphics Component improperly handles objects in memory. An attacker who successfully exploited the vulnerability could obtain information to further compromise the users system. (CVE-2017-8683) - A information disclosure vulnerability exists when the Windows GDI+ component improperly discloses kernel memory addresses. An attacker who successfully exploited the vulnerability could obtain information to further compromise the users system. (CVE-2017-8677, CVE-2017-8680, CVE-2017-8681, CVE-2017-8684, CVE-2017-8685) - An Information disclosure vulnerability exists in Windows kernel that could allow an attacker to retrieve information that could lead to a Kernel Address Space Layout Randomization (KASLR) bypass. An attacker who successfully exploited this vulnerability could retrieve the memory address of a kernel object. (CVE-2017-8687) - An information disclosure vulnerability exists in the way that the Windows Graphics Device Interface+ (GDI+) handles objects in memory, allowing an attacker to retrieve information from a targeted system. By itself, the information disclosure does not allow arbitrary code execution; however, it could allow arbitrary code to be run if the attacker uses it in combination with another vulnerability. (CVE-2017-8688) - An information disclosure vulnerability exists when Windows Uniscribe improperly discloses the contents of its memory. An attacker who successfully exploited the vulnerability could obtain information to further compromise the users system. There are multiple ways an attacker could exploit the vulnerability, such as by convincing a user to open a specially crafted document or by convincing a user to visit an untrusted webpage. The update addresses the vulnerability by correcting how Windows Uniscribe handles objects in memory. (CVE-2017-8695) - A remote code execution vulnerability exists due to the way Windows Uniscribe handles objects in memory. An attacker who successfully exploited this vulnerability could take control of the affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. (CVE-2017-8696) - A remote code execution vulnerability exists when Windows Shell does not properly validate file copy destinations. An attacker who successfully exploited the vulnerability could run arbitrary code in the context of the current user. (CVE-2017-8699) - An information disclosure vulnerability exists when Windows Hyper-V on a host operating system fails to properly validate input from an authenticated user on a guest operating system. (CVE-2017-8707) - An information disclosure vulnerability exists when the Windows kernel fails to properly initialize a memory address, allowing an attacker to retrieve information that could lead to a Kernel Address Space Layout Randomization (KASLR) bypass. An attacker who successfully exploited this vulnerability could retrieve the base address of the kernel driver from a compromised process. (CVE-2017-8708) - An information disclosure vulnerability exists in the Windows System Information Console when it improperly parses XML input containing a reference to an external entity. An attacker who successfully exploited this vulnerability could read arbitrary files via an XML external entity (XXE) declaration. To exploit the vulnerability, an attacker could create a file containing specially crafted XML content and convince an authenticated user to open the file. The update addresses the vulnerability by modifying the way that the Windows System Information Console parses XML input. (CVE-2017-8710) - An information disclosure vulnerability exists when the Windows kernel improperly handles objects in memory. An attacker who successfully exploited this vulnerability could obtain information to further compromise the users system. (CVE-2017-8678, CVE-2017-8679, CVE-2017-8709, CVE-2017-8719) - An elevation of privilege vulnerability exists in Windows when the Win32k component fails to properly handle objects in memory. An attacker who successfully exploited this vulnerability could run arbitrary code in kernel mode. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. (CVE-2017-8720) - A spoofing vulnerability exists when Internet Explorer improperly handles specific HTML content. An attacker who successfully exploited this vulnerability could trick a user into believing that the user was visiting a legitimate website. The specially crafted website could either spoof content or serve as a pivot to chain an attack with other vulnerabilities in web services. To exploit the vulnerability, the user must either browse to a malicious website or be redirected to it. In an email attack scenario, an attacker could send an email message in an attempt to convince the user to click a link to the malicious website. (CVE-2017-8733) - An information disclosure vulnerability exists in Microsoft browsers due to improper parent domain verification in certain functionality. An attacker who successfully exploited the vulnerability could obtain specific information that is used in the parent domain. (CVE-2017-8736) - A remote code execution vulnerability exists in the way that Microsoft browser JavaScript engines render content when handling objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. (CVE-2017-8741, CVE-2017-8748) - A remote code execution vulnerability exists when Internet Explorer improperly accesses objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. (CVE-2017-8747, CVE-2017-8749) - A remote code execution vulnerability exists when Microsoft browsers improperly access objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. (CVE-2017-8750) - A remote code execution vulnerability exists when Microsoft .NET Framework processes untrusted input. An attacker who successfully exploited this vulnerability in software using the .NET framework could take control of an affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. (CVE-2017-8759) - An information disclosure vulnerability exists in Microsoft browsers in the scripting engines due to improper handling of objects in memory. An unauthenticated, remote attacker can exploit this, by convincing a user to visit a specially crafted website, to disclose files on a user's computer. (CVE-2017-8529)"); # https://support.microsoft.com/en-us/help/4038779/windows-7-update-kb4038779 script_set_attribute(attribute:"see_also", value:"http://www.nessus.org/u?bf7e8b94"); # https://support.microsoft.com/en-us/help/4038777/windows-7-update-kb4038777 script_set_attribute(attribute:"see_also", value:"http://www.nessus.org/u?1dbb18cc"); script_set_attribute(attribute:"solution", value: "Apply Security Only update KB4038779 or Cumulative update KB4038777 as well as refer to the KB article for additional information."); script_set_cvss_base_vector("CVSS2#AV:N/AC:M/Au:N/C:C/I:C/A:C"); script_set_cvss_temporal_vector("CVSS2#E:H/RL:OF/RC:C"); script_set_cvss3_base_vector("CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H"); script_set_cvss3_temporal_vector("CVSS:3.0/E:H/RL:O/RC:C"); script_set_attribute(attribute:"cvss_score_source", value:"CVE-2017-8682"); script_set_attribute(attribute:"exploitability_ease", value:"Exploits are available"); script_set_attribute(attribute:"exploit_available", value:"true"); script_set_attribute(attribute:"exploited_by_malware", value:"true"); script_set_attribute(attribute:"vuln_publication_date", value:"2017/09/12"); script_set_attribute(attribute:"patch_publication_date", value:"2017/09/12"); script_set_attribute(attribute:"plugin_publication_date", value:"2017/09/12"); script_set_attribute(attribute:"plugin_type", value:"local"); script_set_attribute(attribute:"cpe", value:"cpe:/o:microsoft:windows"); script_end_attributes(); script_category(ACT_GATHER_INFO); script_family(english:"Windows : Microsoft Bulletins"); script_copyright(english:"This script is Copyright (C) 2017-2020 and is owned by Tenable, Inc. or an Affiliate thereof."); script_dependencies("smb_check_rollup.nasl", "smb_hotfixes.nasl", "ms_bulletin_checks_possible.nasl"); script_require_keys("SMB/MS_Bulletin_Checks/Possible"); script_require_ports(139, 445, "Host/patch_management_checks"); exit(0); } include("global_settings.inc"); include("audit.inc"); include("smb_hotfixes_fcheck.inc"); include("smb_hotfixes.inc"); include("smb_func.inc"); include("smb_reg_query.inc"); include("misc_func.inc"); get_kb_item_or_exit("SMB/MS_Bulletin_Checks/Possible"); bulletin = "MS17-09"; kbs = make_list('4038779', '4038777'); if (get_kb_item("Host/patch_management_checks")) hotfix_check_3rd_party(bulletin:bulletin, kbs:kbs, severity:SECURITY_HOLE); get_kb_item_or_exit("SMB/Registry/Enumerated"); get_kb_item_or_exit("SMB/WindowsVersion", exit_code:1); if (hotfix_check_sp_range(win7:'1') <= 0) audit(AUDIT_OS_SP_NOT_VULN); share = hotfix_get_systemdrive(as_share:TRUE, exit_on_fail:TRUE); if (!is_accessible_share(share:share)) audit(AUDIT_SHARE_FAIL, share); if ( smb_check_rollup( os:"6.1", sp:1, rollup_date:"09_2017", bulletin:bulletin, rollup_kb_list:[4038779, 4038777] ) ) { replace_kb_item(name:'SMB/Missing/'+bulletin, value:TRUE); hotfix_security_hole(); hotfix_check_fversion_end(); exit(0); } else { hotfix_check_fversion_end(); audit(AUDIT_HOST_NOT, hotfix_get_audit_report()); }
NASL family Windows : Microsoft Bulletins NASL id SMB_NT_MS17_SEP_WIN2008.NASL description The remote Windows host is missing multiple security updates released on 2017/09/12. It is, therefore, affected by multiple vulnerabilities : - An information disclosure vulnerability exists when Windows Hyper-V on a host operating system fails to properly validate input from an authenticated user on a guest operating system. To exploit the vulnerability, an attacker on a guest operating system could run a specially crafted application that could cause the Hyper-V host operating system to disclose memory information. An attacker who successfully exploited the vulnerability could gain access to information on the Hyper-V host operating system. The security update addresses the vulnerability by correcting how Hyper-V validates guest operating system user input. (CVE-2017-8707) - An information disclosure vulnerability exists in the Windows System Information Console when it improperly parses XML input containing a reference to an external entity. An attacker who successfully exploited this vulnerability could read arbitrary files via an XML external entity (XXE) declaration. To exploit the vulnerability, an attacker could create a file containing specially crafted XML content and convince an authenticated user to open the file. The update addresses the vulnerability by modifying the way that the Windows System Information Console parses XML input. (CVE-2017-8710) - An Information disclosure vulnerability exists in Windows kernel that could allow an attacker to retrieve information that could lead to a Kernel Address Space Layout Randomization (KASLR) bypass. An attacker who successfully exploited this vulnerability could retrieve the memory address of a kernel object. To exploit this vulnerability, an attacker would have to log on to an affected system and run a specially crafted application. The security update addresses the vulnerability by correcting how the Windows kernel handles memory addresses. (CVE-2017-8687) - An information disclosure vulnerability exists when the Microsoft Windows Graphics Component improperly handles objects in memory. An attacker who successfully exploited the vulnerability could obtain information to further compromise the users system. To exploit this vulnerability, an attacker would have to log on to an affected system and run a specially crafted application. The vulnerability would not allow an attacker to execute code or to elevate user rights directly, but it could be used to obtain information that could be used to try to further compromise the affected system. The update addresses the vulnerability by correcting the way in which the Windows Graphics Component handles objects in memory. (CVE-2017-8683) - A remote code execution vulnerability exists when the Windows font library improperly handles specially crafted embedded fonts. An attacker who successfully exploited this vulnerability could take control of the affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. Users whose accounts are configured to have fewer user rights on the system could be less impacted than users who operate with administrative user rights. There are multiple ways an attacker could exploit this vulnerability. In a web- based attack scenario, an attacker could host a specially crafted website that is designed to exploit this vulnerability and then convince a user to view the website. An attacker would have no way to force users to view the attacker-controlled content. Instead, an attacker would have to convince users to take action, typically by getting them to click a link in an email message or in an Instant Messenger message that takes users to the attacker last seen 2020-06-01 modified 2020-06-02 plugin id 103140 published 2017-09-12 reporter This script is Copyright (C) 2017-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/103140 title Windows 2008 September 2017 Multiple Security Updates
Vulner Lab
id | VULNERLAB:2094 |
last seen | 2019-07-10 |
modified | 2017-09-18 |
published | 2017-09-18 |
reporter | S.AbenMassaoud [[email protected]] - @benmassaou - https://www.vulnerability-lab.com/show.php?user=S.AbenMassaoud |
source | http://www.vulnerability-lab.com/get_content.php?id=2094 |
title | Microsoft Windows - MSC XXE Data Exfiltrate Vulnerability |
References
- http://www.securityfocus.com/bid/100793
- http://www.securityfocus.com/bid/100793
- http://www.securitytracker.com/id/1039325
- http://www.securitytracker.com/id/1039325
- https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2017-8710
- https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2017-8710
- https://www.vulnerability-lab.com/get_content.php?id=2094
- https://www.vulnerability-lab.com/get_content.php?id=2094
- https://www.youtube.com/watch?v=bIFot3a-58I
- https://www.youtube.com/watch?v=bIFot3a-58I