Vulnerabilities > CVE-2016-3104 - Resource Exhaustion vulnerability in Mongodb 2.4.0/2.6.0

047910
CVSS 7.5 - HIGH
Attack vector
NETWORK
Attack complexity
LOW
Privileges required
NONE
Confidentiality impact
NONE
Integrity impact
NONE
Availability impact
HIGH
network
low complexity
mongodb
CWE-400
nessus

Summary

mongod in MongoDB 2.6, when using 2.4-style users, and 2.4 allow remote attackers to cause a denial of service (memory consumption and process termination) by leveraging in-memory database representation when authenticating against a non-existent database.

Vulnerable Configurations

Part Description Count
Application
Mongodb
2

Common Attack Pattern Enumeration and Classification (CAPEC)

  • XML Ping of the Death
    An attacker initiates a resource depletion attack where a large number of small XML messages are delivered at a sufficiently rapid rate to cause a denial of service or crash of the target. Transactions such as repetitive SOAP transactions can deplete resources faster than a simple flooding attack because of the additional resources used by the SOAP protocol and the resources necessary to process SOAP messages. The transactions used are immaterial as long as they cause resource utilization on the target. In other words, this is a normal flooding attack augmented by using messages that will require extra processing on the target.
  • XML Entity Expansion
    An attacker submits an XML document to a target application where the XML document uses nested entity expansion to produce an excessively large output XML. XML allows the definition of macro-like structures that can be used to simplify the creation of complex structures. However, this capability can be abused to create excessive demands on a processor's CPU and memory. A small number of nested expansions can result in an exponential growth in demands on memory.
  • Inducing Account Lockout
    An attacker leverages the security functionality of the system aimed at thwarting potential attacks to launch a denial of service attack against a legitimate system user. Many systems, for instance, implement a password throttling mechanism that locks an account after a certain number of incorrect log in attempts. An attacker can leverage this throttling mechanism to lock a legitimate user out of their own account. The weakness that is being leveraged by an attacker is the very security feature that has been put in place to counteract attacks.
  • Violating Implicit Assumptions Regarding XML Content (aka XML Denial of Service (XDoS))
    XML Denial of Service (XDoS) can be applied to any technology that utilizes XML data. This is, of course, most distributed systems technology including Java, .Net, databases, and so on. XDoS is most closely associated with web services, SOAP, and Rest, because remote service requesters can post malicious XML payloads to the service provider designed to exhaust the service provider's memory, CPU, and/or disk space. The main weakness in XDoS is that the service provider generally must inspect, parse, and validate the XML messages to determine routing, workflow, security considerations, and so on. It is exactly these inspection, parsing, and validation routines that XDoS targets. There are three primary attack vectors that XDoS can navigate Target CPU through recursion: attacker creates a recursive payload and sends to service provider Target memory through jumbo payloads: service provider uses DOM to parse XML. DOM creates in memory representation of XML document, but when document is very large (for example, north of 1 Gb) service provider host may exhaust memory trying to build memory objects. XML Ping of death: attack service provider with numerous small files that clog the system. All of the above attacks exploit the loosely coupled nature of web services, where the service provider has little to no control over the service requester and any messages the service requester sends.

Nessus

NASL familyDatabases
NASL idMONGODB_3_0_0.NASL
descriptionThe version of the remote MongoDB server is 2.4 or 2.6. It is, therefore, affected by a denial of service vulnerability in mongod. A remote, unauthenticated attacker can exploit this, via authenticating against a non-existent database to cause a memory exhaustion, denying service to legitimate users. Note that Nessus has not tested for these issues but has instead relied only on the application
last seen2020-06-01
modified2020-06-02
plugin id126648
published2019-07-15
reporterThis script is Copyright (C) 2019 and is owned by Tenable, Inc. or an Affiliate thereof.
sourcehttps://www.tenable.com/plugins/nessus/126648
titleMongoDB 2.4 / 2.6 Denial of Service Vulnerability
code
#
# (C) Tenable Network Security, Inc.
#

include("compat.inc");

if (description)
{
  script_id(126648);
  script_version("1.2");
  script_cvs_date("Date: 2019/10/18 23:14:14");

  script_cve_id("CVE-2016-3104");
  script_bugtraq_id(94929);

  script_name(english:"MongoDB 2.4 / 2.6 Denial of Service Vulnerability");
  script_summary(english:"Checks the version of MongoDB.");

  script_set_attribute(attribute:"synopsis", value:
"The remote database server is affected by a denial of service vulnerability.");
  script_set_attribute(attribute:"description", value:
"The version of the remote MongoDB server is 2.4 or 2.6. It is, therefore, affected by a denial of service vulnerability
in mongod. A remote, unauthenticated attacker can exploit this, via authenticating against a non-existent database to
cause a memory exhaustion, denying service to legitimate users.

Note that Nessus has not tested for these issues but has instead relied only on the application's self-reported version
number.");
  # https://jira.mongodb.org/browse/SERVER-24378
  script_set_attribute(attribute:"see_also", value:"http://www.nessus.org/u?671760f0");
  script_set_attribute(attribute:"solution", value:
"Apply the appropriate patch or workaround per the vendor's advisory.");
  script_set_cvss_base_vector("CVSS2#AV:N/AC:L/Au:N/C:N/I:N/A:P");
  script_set_cvss_temporal_vector("CVSS2#E:U/RL:OF/RC:C");
  script_set_cvss3_base_vector("CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H");
  script_set_cvss3_temporal_vector("CVSS:3.0/E:U/RL:O/RC:C");
  script_set_attribute(attribute:"cvss_score_source", value:"CVE-2016-3104");

  script_set_attribute(attribute:"exploitability_ease", value:"No known exploits are available");

  script_set_attribute(attribute:"vuln_publication_date", value:"2016/06/02");
  script_set_attribute(attribute:"patch_publication_date", value:"2016/06/02");
  script_set_attribute(attribute:"plugin_publication_date", value:"2019/07/15");

  script_set_attribute(attribute:"potential_vulnerability", value:"true");
  script_set_attribute(attribute:"plugin_type", value:"remote");
  script_set_attribute(attribute:"cpe", value:"cpe:/a:mongodb:mongodb");
  script_end_attributes();

  script_category(ACT_GATHER_INFO);
  script_family(english:"Databases");

  script_copyright(english:"This script is Copyright (C) 2019 and is owned by Tenable, Inc. or an Affiliate thereof.");

  script_dependencies("mongodb_detect.nasl");
  script_require_keys("Settings/ParanoidReport", "Services/mongodb");

  exit(0);
}

include('vcf.inc');

app = 'MongoDB';
port = get_service(svc:'mongodb', default:27017, exit_on_fail:TRUE);

# This issue only affects the following MongoDB versions when running with authentication under 
# MongoDB version 2.4 or MongoDB version 2.6 when running with 2.4-style users
if (report_paranoia < 2) audit(AUDIT_PARANOID);

kbVer = 'mongodb/' + port + '/Version';
app_info = vcf::get_app_info(app:app, kb_ver:kbVer, port: port);

constraints = [
  { 'min_version' : '2.4', 'max_version' : '2.4.9999', 'fixed_version' : '3.0.0' },
  { 'min_version' : '2.6', 'max_version' : '2.6.9999', 'fixed_version' : '3.0.0' }
];

vcf::check_version_and_report(app_info:app_info, constraints:constraints, severity:SECURITY_WARNING);