Vulnerabilities > CVE-2015-3149 - Link Following vulnerability in Redhat products

047910
CVSS 5.5 - MEDIUM
Attack vector
LOCAL
Attack complexity
LOW
Privileges required
LOW
Confidentiality impact
NONE
Integrity impact
HIGH
Availability impact
NONE
local
low complexity
redhat
CWE-59
nessus

Summary

The Hotspot component in OpenJDK8 as packaged in Red Hat Enterprise Linux 6 and 7 allows local users to write to arbitrary files via a symlink attack.

Common Attack Pattern Enumeration and Classification (CAPEC)

  • Symlink Attack
    An attacker positions a symbolic link in such a manner that the targeted user or application accesses the link's endpoint, assuming that it is accessing a file with the link's name. The endpoint file may be either output or input. If the file is output, the result is that the endpoint is modified, instead of a file at the intended location. Modifications to the endpoint file may include appending, overwriting, corrupting, changing permissions, or other modifications. In some variants of this attack the attacker may be able to control the change to a file while in other cases they cannot. The former is especially damaging since the attacker may be able to grant themselves increased privileges or insert false information, but the latter can also be damaging as it can expose sensitive information or corrupt or destroy vital system or application files. Alternatively, the endpoint file may serve as input to the targeted application. This can be used to feed malformed input into the target or to cause the target to process different information, possibly allowing the attacker to control the actions of the target or to cause the target to expose information to the attacker. Moreover, the actions taken on the endpoint file are undertaken with the permissions of the targeted user or application, which may exceed the permissions that the attacker would normally have.
  • Accessing, Modifying or Executing Executable Files
    An attack of this type exploits a system's configuration that allows an attacker to either directly access an executable file, for example through shell access; or in a possible worst case allows an attacker to upload a file and then execute it. Web servers, ftp servers, and message oriented middleware systems which have many integration points are particularly vulnerable, because both the programmers and the administrators must be in synch regarding the interfaces and the correct privileges for each interface.
  • Leverage Executable Code in Non-Executable Files
    An attack of this type exploits a system's trust in configuration and resource files, when the executable loads the resource (such as an image file or configuration file) the attacker has modified the file to either execute malicious code directly or manipulate the target process (e.g. application server) to execute based on the malicious configuration parameters. Since systems are increasingly interrelated mashing up resources from local and remote sources the possibility of this attack occurring is high. The attack can be directed at a client system, such as causing buffer overrun through loading seemingly benign image files, as in Microsoft Security Bulletin MS04-028 where specially crafted JPEG files could cause a buffer overrun once loaded into the browser. Another example targets clients reading pdf files. In this case the attacker simply appends javascript to the end of a legitimate url for a pdf (http://www.gnucitizen.org/blog/danger-danger-danger/) http://path/to/pdf/file.pdf#whatever_name_you_want=javascript:your_code_here The client assumes that they are reading a pdf, but the attacker has modified the resource and loaded executable javascript into the client's browser process. The attack can also target server processes. The attacker edits the resource or configuration file, for example a web.xml file used to configure security permissions for a J2EE app server, adding role name "public" grants all users with the public role the ability to use the administration functionality. The server trusts its configuration file to be correct, but when they are manipulated, the attacker gains full control.
  • Manipulating Input to File System Calls
    An attacker manipulates inputs to the target software which the target software passes to file system calls in the OS. The goal is to gain access to, and perhaps modify, areas of the file system that the target software did not intend to be accessible.

Nessus

  • NASL familyScientific Linux Local Security Checks
    NASL idSL_20150715_JAVA_1_8_0_OPENJDK_ON_SL6_X.NASL
    descriptionMultiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass Java sandbox restrictions. (CVE-2015-4760, CVE-2015-2628, CVE-2015-4731, CVE-2015-2590, CVE-2015-4732, CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) It was discovered that the GCM (Galois Counter Mode) implementation in the Security component of OpenJDK failed to properly perform a null check. This could cause the Java Virtual Machine to crash when an application performed encryption using a block cipher in the GCM mode. (CVE-2015-2659) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them do decrypt all traffic. (CVE-2015-4000) It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621, CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) Multiple insecure temporary file use issues were found in the way the Hotspot component in OpenJDK created performance statistics and error log files. A local attacker could possibly make a victim using OpenJDK overwrite arbitrary files using a symlink attack. Note: This issue was originally fixed as CVE-2015-0383, but the fix was regressed in the SLSA-2015:0809 advisory. (CVE-2015-3149) All running instances of OpenJDK Java must be restarted for the update to take effect.
    last seen2020-03-18
    modified2015-07-16
    plugin id84793
    published2015-07-16
    reporterThis script is Copyright (C) 2015-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/84793
    titleScientific Linux Security Update : java-1.8.0-openjdk on SL6.x, SL7.x i386/x86_64 (20150715) (Bar Mitzvah) (Logjam)
    code
    #
    # (C) Tenable Network Security, Inc.
    #
    # The descriptive text is (C) Scientific Linux.
    #
    
    include("compat.inc");
    
    if (description)
    {
      script_id(84793);
      script_version("2.12");
      script_set_attribute(attribute:"plugin_modification_date", value:"2020/02/25");
    
      script_cve_id("CVE-2015-0383", "CVE-2015-2590", "CVE-2015-2601", "CVE-2015-2621", "CVE-2015-2625", "CVE-2015-2628", "CVE-2015-2632", "CVE-2015-2659", "CVE-2015-2808", "CVE-2015-3149", "CVE-2015-4000", "CVE-2015-4731", "CVE-2015-4732", "CVE-2015-4733", "CVE-2015-4748", "CVE-2015-4749", "CVE-2015-4760");
    
      script_name(english:"Scientific Linux Security Update : java-1.8.0-openjdk on SL6.x, SL7.x i386/x86_64 (20150715) (Bar Mitzvah) (Logjam)");
      script_summary(english:"Checks rpm output for the updated packages");
    
      script_set_attribute(
        attribute:"synopsis", 
        value:
    "The remote Scientific Linux host is missing one or more security
    updates."
      );
      script_set_attribute(
        attribute:"description", 
        value:
    "Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and
    RMI components in OpenJDK. An untrusted Java application or applet
    could use these flaws to bypass Java sandbox restrictions.
    (CVE-2015-4760, CVE-2015-2628, CVE-2015-4731, CVE-2015-2590,
    CVE-2015-4732, CVE-2015-4733)
    
    A flaw was found in the way the Libraries component of OpenJDK
    verified Online Certificate Status Protocol (OCSP) responses. An OCSP
    response with no nextUpdate date specified was incorrectly handled as
    having unlimited validity, possibly causing a revoked X.509
    certificate to be interpreted as valid. (CVE-2015-4748)
    
    It was discovered that the JCE component in OpenJDK failed to use
    constant time comparisons in multiple cases. An attacker could
    possibly use these flaws to disclose sensitive information by
    measuring the time used to perform operations using these non-constant
    time comparisons. (CVE-2015-2601)
    
    It was discovered that the GCM (Galois Counter Mode) implementation in
    the Security component of OpenJDK failed to properly perform a null
    check. This could cause the Java Virtual Machine to crash when an
    application performed encryption using a block cipher in the GCM mode.
    (CVE-2015-2659)
    
    A flaw was found in the RC4 encryption algorithm. When using certain
    keys for RC4 encryption, an attacker could obtain portions of the
    plain text from the cipher text without the knowledge of the
    encryption key. (CVE-2015-2808)
    
    A flaw was found in the way the TLS protocol composed the
    Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could
    use this flaw to force the use of weak 512 bit export-grade keys
    during the key exchange, allowing them do decrypt all traffic.
    (CVE-2015-4000)
    
    It was discovered that the JNDI component in OpenJDK did not handle
    DNS resolutions correctly. An attacker able to trigger such DNS errors
    could cause a Java application using JNDI to consume memory and CPU
    time, and possibly block further DNS resolution. (CVE-2015-4749)
    
    Multiple information leak flaws were found in the JMX and 2D
    components in OpenJDK. An untrusted Java application or applet could
    use this flaw to bypass certain Java sandbox restrictions.
    (CVE-2015-2621, CVE-2015-2632)
    
    A flaw was found in the way the JSSE component in OpenJDK performed
    X.509 certificate identity verification when establishing a TLS/SSL
    connection to a host identified by an IP address. In certain cases,
    the certificate was accepted as valid if it was issued for a host name
    to which the IP address resolves rather than for the IP address.
    (CVE-2015-2625)
    
    Multiple insecure temporary file use issues were found in the way the
    Hotspot component in OpenJDK created performance statistics and error
    log files. A local attacker could possibly make a victim using OpenJDK
    overwrite arbitrary files using a symlink attack. Note: This issue was
    originally fixed as CVE-2015-0383, but the fix was regressed in the
    SLSA-2015:0809 advisory. (CVE-2015-3149)
    
    All running instances of OpenJDK Java must be restarted for the update
    to take effect."
      );
      # https://listserv.fnal.gov/scripts/wa.exe?A2=ind1507&L=scientific-linux-errata&F=&S=&P=8420
      script_set_attribute(
        attribute:"see_also",
        value:"http://www.nessus.org/u?46895054"
      );
      script_set_attribute(attribute:"solution", value:"Update the affected packages.");
      script_set_cvss_base_vector("CVSS2#AV:N/AC:L/Au:N/C:C/I:C/A:C");
      script_set_cvss3_base_vector("CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:N");
      script_set_attribute(attribute:"exploitability_ease", value:"Exploits are available");
      script_set_attribute(attribute:"exploit_available", value:"true");
      script_set_attribute(attribute:"exploited_by_malware", value:"true");
    
      script_set_attribute(attribute:"plugin_type", value:"local");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:fermilab:scientific_linux:java-1.8.0-openjdk");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:fermilab:scientific_linux:java-1.8.0-openjdk-accessibility");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:fermilab:scientific_linux:java-1.8.0-openjdk-debuginfo");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:fermilab:scientific_linux:java-1.8.0-openjdk-demo");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:fermilab:scientific_linux:java-1.8.0-openjdk-devel");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:fermilab:scientific_linux:java-1.8.0-openjdk-headless");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:fermilab:scientific_linux:java-1.8.0-openjdk-javadoc");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:fermilab:scientific_linux:java-1.8.0-openjdk-src");
      script_set_attribute(attribute:"cpe", value:"x-cpe:/o:fermilab:scientific_linux");
    
      script_set_attribute(attribute:"vuln_publication_date", value:"2015/01/21");
      script_set_attribute(attribute:"patch_publication_date", value:"2015/07/15");
      script_set_attribute(attribute:"plugin_publication_date", value:"2015/07/16");
      script_set_attribute(attribute:"in_the_news", value:"true");
      script_set_attribute(attribute:"generated_plugin", value:"current");
      script_end_attributes();
    
      script_category(ACT_GATHER_INFO);
      script_copyright(english:"This script is Copyright (C) 2015-2020 and is owned by Tenable, Inc. or an Affiliate thereof.");
      script_family(english:"Scientific Linux Local Security Checks");
    
      script_dependencies("ssh_get_info.nasl");
      script_require_keys("Host/local_checks_enabled", "Host/cpu", "Host/RedHat/release", "Host/RedHat/rpm-list");
    
      exit(0);
    }
    
    
    include("audit.inc");
    include("global_settings.inc");
    include("misc_func.inc");
    include("rpm.inc");
    
    if (!get_kb_item("Host/local_checks_enabled")) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED);
    release = get_kb_item("Host/RedHat/release");
    if (isnull(release) || "Scientific Linux " >!< release) audit(AUDIT_HOST_NOT, "running Scientific Linux");
    os_ver = pregmatch(pattern: "Scientific Linux.*release ([0-9]+(\.[0-9]+)?)", string:release);
    if (isnull(os_ver)) audit(AUDIT_UNKNOWN_APP_VER, "Scientific Linux");
    os_ver = os_ver[1];
    if (! preg(pattern:"^7([^0-9]|$)", string:os_ver)) audit(AUDIT_OS_NOT, "Scientific Linux 7.x", "Scientific Linux " + os_ver);
    if (!get_kb_item("Host/RedHat/rpm-list")) audit(AUDIT_PACKAGE_LIST_MISSING);
    
    cpu = get_kb_item("Host/cpu");
    if (isnull(cpu)) audit(AUDIT_UNKNOWN_ARCH);
    if (cpu >!< "x86_64" && cpu !~ "^i[3-6]86$") audit(AUDIT_LOCAL_CHECKS_NOT_IMPLEMENTED, "Scientific Linux", cpu);
    
    
    flag = 0;
    if (rpm_check(release:"SL6", reference:"java-1.8.0-openjdk-1.8.0.51-0.b16.el6_6")) flag++;
    if (rpm_check(release:"SL6", reference:"java-1.8.0-openjdk-debuginfo-1.8.0.51-0.b16.el6_6")) flag++;
    if (rpm_check(release:"SL6", reference:"java-1.8.0-openjdk-demo-1.8.0.51-0.b16.el6_6")) flag++;
    if (rpm_check(release:"SL6", reference:"java-1.8.0-openjdk-devel-1.8.0.51-0.b16.el6_6")) flag++;
    if (rpm_check(release:"SL6", reference:"java-1.8.0-openjdk-headless-1.8.0.51-0.b16.el6_6")) flag++;
    if (rpm_check(release:"SL6", reference:"java-1.8.0-openjdk-javadoc-1.8.0.51-0.b16.el6_6")) flag++;
    if (rpm_check(release:"SL6", reference:"java-1.8.0-openjdk-src-1.8.0.51-0.b16.el6_6")) flag++;
    
    if (rpm_check(release:"SL7", cpu:"x86_64", reference:"java-1.8.0-openjdk-1.8.0.51-1.b16.el7_1")) flag++;
    if (rpm_check(release:"SL7", cpu:"x86_64", reference:"java-1.8.0-openjdk-accessibility-1.8.0.51-1.b16.el7_1")) flag++;
    if (rpm_check(release:"SL7", cpu:"x86_64", reference:"java-1.8.0-openjdk-debuginfo-1.8.0.51-1.b16.el7_1")) flag++;
    if (rpm_check(release:"SL7", cpu:"x86_64", reference:"java-1.8.0-openjdk-demo-1.8.0.51-1.b16.el7_1")) flag++;
    if (rpm_check(release:"SL7", cpu:"x86_64", reference:"java-1.8.0-openjdk-devel-1.8.0.51-1.b16.el7_1")) flag++;
    if (rpm_check(release:"SL7", cpu:"x86_64", reference:"java-1.8.0-openjdk-headless-1.8.0.51-1.b16.el7_1")) flag++;
    if (rpm_check(release:"SL7", reference:"java-1.8.0-openjdk-javadoc-1.8.0.51-1.b16.el7_1")) flag++;
    if (rpm_check(release:"SL7", cpu:"x86_64", reference:"java-1.8.0-openjdk-src-1.8.0.51-1.b16.el7_1")) flag++;
    
    
    if (flag)
    {
      security_report_v4(
        port       : 0,
        severity   : SECURITY_HOLE,
        extra      : rpm_report_get()
      );
      exit(0);
    }
    else
    {
      tested = pkg_tests_get();
      if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested);
      else audit(AUDIT_PACKAGE_NOT_INSTALLED, "java-1.8.0-openjdk / java-1.8.0-openjdk-accessibility / etc");
    }
    
  • NASL familyAmazon Linux Local Security Checks
    NASL idALA_ALAS-2015-571.NASL
    descriptionMultiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass Java sandbox restrictions. (CVE-2015-4760 , CVE-2015-2628 , CVE-2015-4731 , CVE-2015-2590 , CVE-2015-4732 , CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) It was discovered that the GCM (Galois Counter Mode) implementation in the Security component of OpenJDK failed to properly perform a null check. This could cause the Java Virtual Machine to crash when an application performed encryption using a block cipher in the GCM mode. (CVE-2015-2659) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) Please note that with this update, OpenJDK now disables RC4 TLS/SSL cipher suites by default to address the CVE-2015-2808 issue. A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them do decrypt all traffic. (CVE-2015-4000) Please note that this update forces the TLS/SSL client implementation in OpenJDK to reject DH key sizes below 768 bits, which prevents sessions to be downgraded to export-grade keys. It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621 , CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) Multiple insecure temporary file use issues were found in the way the Hotspot component in OpenJDK created performance statistics and error log files. A local attacker could possibly make a victim using OpenJDK overwrite arbitrary files using a symlink attack.
    last seen2020-06-01
    modified2020-06-02
    plugin id84931
    published2015-07-23
    reporterThis script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/84931
    titleAmazon Linux AMI : java-1.8.0-openjdk (ALAS-2015-571) (Bar Mitzvah) (Logjam)
    code
    #
    # (C) Tenable Network Security, Inc.
    #
    # The descriptive text and package checks in this plugin were
    # extracted from Amazon Linux AMI Security Advisory ALAS-2015-571.
    #
    
    include("compat.inc");
    
    if (description)
    {
      script_id(84931);
      script_version("2.10");
      script_cvs_date("Date: 2019/10/16 10:34:21");
    
      script_cve_id("CVE-2015-0383", "CVE-2015-2590", "CVE-2015-2601", "CVE-2015-2621", "CVE-2015-2625", "CVE-2015-2628", "CVE-2015-2632", "CVE-2015-2659", "CVE-2015-2808", "CVE-2015-3149", "CVE-2015-4000", "CVE-2015-4731", "CVE-2015-4732", "CVE-2015-4733", "CVE-2015-4748", "CVE-2015-4749", "CVE-2015-4760");
      script_xref(name:"ALAS", value:"2015-571");
      script_xref(name:"RHSA", value:"2015:1228");
    
      script_name(english:"Amazon Linux AMI : java-1.8.0-openjdk (ALAS-2015-571) (Bar Mitzvah) (Logjam)");
      script_summary(english:"Checks rpm output for the updated packages");
    
      script_set_attribute(
        attribute:"synopsis", 
        value:"The remote Amazon Linux AMI host is missing a security update."
      );
      script_set_attribute(
        attribute:"description", 
        value:
    "Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and
    RMI components in OpenJDK. An untrusted Java application or applet
    could use these flaws to bypass Java sandbox restrictions.
    (CVE-2015-4760 , CVE-2015-2628 , CVE-2015-4731 , CVE-2015-2590 ,
    CVE-2015-4732 , CVE-2015-4733)
    
    A flaw was found in the way the Libraries component of OpenJDK
    verified Online Certificate Status Protocol (OCSP) responses. An OCSP
    response with no nextUpdate date specified was incorrectly handled as
    having unlimited validity, possibly causing a revoked X.509
    certificate to be interpreted as valid. (CVE-2015-4748)
    
    It was discovered that the JCE component in OpenJDK failed to use
    constant time comparisons in multiple cases. An attacker could
    possibly use these flaws to disclose sensitive information by
    measuring the time used to perform operations using these non-constant
    time comparisons. (CVE-2015-2601)
    
    It was discovered that the GCM (Galois Counter Mode) implementation in
    the Security component of OpenJDK failed to properly perform a null
    check. This could cause the Java Virtual Machine to crash when an
    application performed encryption using a block cipher in the GCM mode.
    (CVE-2015-2659)
    
    A flaw was found in the RC4 encryption algorithm. When using certain
    keys for RC4 encryption, an attacker could obtain portions of the
    plain text from the cipher text without the knowledge of the
    encryption key. (CVE-2015-2808)
    
    Please note that with this update, OpenJDK now disables RC4 TLS/SSL
    cipher suites by default to address the CVE-2015-2808 issue.
    
    A flaw was found in the way the TLS protocol composed the
    Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could
    use this flaw to force the use of weak 512 bit export-grade keys
    during the key exchange, allowing them do decrypt all traffic.
    (CVE-2015-4000)
    
    Please note that this update forces the TLS/SSL client implementation
    in OpenJDK to reject DH key sizes below 768 bits, which prevents
    sessions to be downgraded to export-grade keys.
    
    It was discovered that the JNDI component in OpenJDK did not handle
    DNS resolutions correctly. An attacker able to trigger such DNS errors
    could cause a Java application using JNDI to consume memory and CPU
    time, and possibly block further DNS resolution. (CVE-2015-4749)
    
    Multiple information leak flaws were found in the JMX and 2D
    components in OpenJDK. An untrusted Java application or applet could
    use this flaw to bypass certain Java sandbox restrictions.
    (CVE-2015-2621 , CVE-2015-2632)
    
    A flaw was found in the way the JSSE component in OpenJDK performed
    X.509 certificate identity verification when establishing a TLS/SSL
    connection to a host identified by an IP address. In certain cases,
    the certificate was accepted as valid if it was issued for a host name
    to which the IP address resolves rather than for the IP address.
    (CVE-2015-2625)
    
    Multiple insecure temporary file use issues were found in the way the
    Hotspot component in OpenJDK created performance statistics and error
    log files. A local attacker could possibly make a victim using OpenJDK
    overwrite arbitrary files using a symlink attack."
      );
      script_set_attribute(
        attribute:"see_also",
        value:"https://alas.aws.amazon.com/ALAS-2015-571.html"
      );
      script_set_attribute(
        attribute:"solution", 
        value:"Run 'yum update java-1.8.0-openjdk' to update your system."
      );
      script_set_cvss_base_vector("CVSS2#AV:N/AC:L/Au:N/C:C/I:C/A:C");
      script_set_cvss3_base_vector("CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:N");
      script_set_attribute(attribute:"exploitability_ease", value:"Exploits are available");
      script_set_attribute(attribute:"exploit_available", value:"true");
      script_set_attribute(attribute:"exploited_by_malware", value:"true");
    
      script_set_attribute(attribute:"plugin_type", value:"local");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:amazon:linux:java-1.8.0-openjdk");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:amazon:linux:java-1.8.0-openjdk-debuginfo");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:amazon:linux:java-1.8.0-openjdk-demo");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:amazon:linux:java-1.8.0-openjdk-devel");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:amazon:linux:java-1.8.0-openjdk-headless");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:amazon:linux:java-1.8.0-openjdk-javadoc");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:amazon:linux:java-1.8.0-openjdk-src");
      script_set_attribute(attribute:"cpe", value:"cpe:/o:amazon:linux");
    
      script_set_attribute(attribute:"vuln_publication_date", value:"2015/01/21");
      script_set_attribute(attribute:"patch_publication_date", value:"2015/07/22");
      script_set_attribute(attribute:"plugin_publication_date", value:"2015/07/23");
      script_set_attribute(attribute:"in_the_news", value:"true");
      script_set_attribute(attribute:"generated_plugin", value:"current");
      script_end_attributes();
    
      script_category(ACT_GATHER_INFO);
      script_copyright(english:"This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof.");
      script_family(english:"Amazon Linux Local Security Checks");
    
      script_dependencies("ssh_get_info.nasl");
      script_require_keys("Host/local_checks_enabled", "Host/AmazonLinux/release", "Host/AmazonLinux/rpm-list");
    
      exit(0);
    }
    
    
    include("audit.inc");
    include("global_settings.inc");
    include("rpm.inc");
    
    
    if (!get_kb_item("Host/local_checks_enabled")) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED);
    
    release = get_kb_item("Host/AmazonLinux/release");
    if (isnull(release) || !strlen(release)) audit(AUDIT_OS_NOT, "Amazon Linux");
    os_ver = pregmatch(pattern: "^AL(A|\d)", string:release);
    if (isnull(os_ver)) audit(AUDIT_UNKNOWN_APP_VER, "Amazon Linux");
    os_ver = os_ver[1];
    if (os_ver != "A")
    {
      if (os_ver == 'A') os_ver = 'AMI';
      audit(AUDIT_OS_NOT, "Amazon Linux AMI", "Amazon Linux " + os_ver);
    }
    
    if (!get_kb_item("Host/AmazonLinux/rpm-list")) audit(AUDIT_PACKAGE_LIST_MISSING);
    
    
    flag = 0;
    if (rpm_check(release:"ALA", reference:"java-1.8.0-openjdk-1.8.0.51-1.b16.6.amzn1")) flag++;
    if (rpm_check(release:"ALA", reference:"java-1.8.0-openjdk-debuginfo-1.8.0.51-1.b16.6.amzn1")) flag++;
    if (rpm_check(release:"ALA", reference:"java-1.8.0-openjdk-demo-1.8.0.51-1.b16.6.amzn1")) flag++;
    if (rpm_check(release:"ALA", reference:"java-1.8.0-openjdk-devel-1.8.0.51-1.b16.6.amzn1")) flag++;
    if (rpm_check(release:"ALA", reference:"java-1.8.0-openjdk-headless-1.8.0.51-1.b16.6.amzn1")) flag++;
    if (rpm_check(release:"ALA", reference:"java-1.8.0-openjdk-javadoc-1.8.0.51-1.b16.6.amzn1")) flag++;
    if (rpm_check(release:"ALA", reference:"java-1.8.0-openjdk-src-1.8.0.51-1.b16.6.amzn1")) flag++;
    
    if (flag)
    {
      if (report_verbosity > 0) security_hole(port:0, extra:rpm_report_get());
      else security_hole(0);
      exit(0);
    }
    else
    {
      tested = pkg_tests_get();
      if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested);
      else audit(AUDIT_PACKAGE_NOT_INSTALLED, "java-1.8.0-openjdk / java-1.8.0-openjdk-debuginfo / etc");
    }
    
  • NASL familyRed Hat Local Security Checks
    NASL idREDHAT-RHSA-2015-1228.NASL
    descriptionUpdated java-1.8.0-openjdk packages that fix multiple security issues are now available for Red Hat Enterprise Linux 6 and 7. Red Hat Product Security has rated this update as having Important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The java-1.8.0-openjdk packages provide the OpenJDK 8 Java Runtime Environment and the OpenJDK 8 Java Software Development Kit. Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass Java sandbox restrictions. (CVE-2015-4760, CVE-2015-2628, CVE-2015-4731, CVE-2015-2590, CVE-2015-4732, CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) It was discovered that the GCM (Galois Counter Mode) implementation in the Security component of OpenJDK failed to properly perform a null check. This could cause the Java Virtual Machine to crash when an application performed encryption using a block cipher in the GCM mode. (CVE-2015-2659) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) Note: With this update, OpenJDK now disables RC4 TLS/SSL cipher suites by default to address the CVE-2015-2808 issue. Refer to Red Hat Bugzilla bug 1207101, linked to in the References section, for additional details about this change. A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them do decrypt all traffic. (CVE-2015-4000) Note: This update forces the TLS/SSL client implementation in OpenJDK to reject DH key sizes below 768 bits, which prevents sessions to be downgraded to export-grade keys. Refer to Red Hat Bugzilla bug 1223211, linked to in the References section, for additional details about this change. It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621, CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) Multiple insecure temporary file use issues were found in the way the Hotspot component in OpenJDK created performance statistics and error log files. A local attacker could possibly make a victim using OpenJDK overwrite arbitrary files using a symlink attack. Note: This issue was originally fixed as CVE-2015-0383, but the fix was regressed in the RHSA-2015:0809 advisory. (CVE-2015-3149) All users of java-1.8.0-openjdk are advised to upgrade to these updated packages, which resolve these issues. All running instances of OpenJDK Java must be restarted for the update to take effect.
    last seen2020-06-01
    modified2020-06-02
    plugin id84787
    published2015-07-16
    reporterThis script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/84787
    titleRHEL 6 / 7 : java-1.8.0-openjdk (RHSA-2015:1228) (Bar Mitzvah) (Logjam)
  • NASL familyCentOS Local Security Checks
    NASL idCENTOS_RHSA-2015-1228.NASL
    descriptionUpdated java-1.8.0-openjdk packages that fix multiple security issues are now available for Red Hat Enterprise Linux 6 and 7. Red Hat Product Security has rated this update as having Important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The java-1.8.0-openjdk packages provide the OpenJDK 8 Java Runtime Environment and the OpenJDK 8 Java Software Development Kit. Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass Java sandbox restrictions. (CVE-2015-4760, CVE-2015-2628, CVE-2015-4731, CVE-2015-2590, CVE-2015-4732, CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) It was discovered that the GCM (Galois Counter Mode) implementation in the Security component of OpenJDK failed to properly perform a null check. This could cause the Java Virtual Machine to crash when an application performed encryption using a block cipher in the GCM mode. (CVE-2015-2659) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) Note: With this update, OpenJDK now disables RC4 TLS/SSL cipher suites by default to address the CVE-2015-2808 issue. Refer to Red Hat Bugzilla bug 1207101, linked to in the References section, for additional details about this change. A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them do decrypt all traffic. (CVE-2015-4000) Note: This update forces the TLS/SSL client implementation in OpenJDK to reject DH key sizes below 768 bits, which prevents sessions to be downgraded to export-grade keys. Refer to Red Hat Bugzilla bug 1223211, linked to in the References section, for additional details about this change. It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621, CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) Multiple insecure temporary file use issues were found in the way the Hotspot component in OpenJDK created performance statistics and error log files. A local attacker could possibly make a victim using OpenJDK overwrite arbitrary files using a symlink attack. Note: This issue was originally fixed as CVE-2015-0383, but the fix was regressed in the RHSA-2015:0809 advisory. (CVE-2015-3149) All users of java-1.8.0-openjdk are advised to upgrade to these updated packages, which resolve these issues. All running instances of OpenJDK Java must be restarted for the update to take effect.
    last seen2020-06-01
    modified2020-06-02
    plugin id84770
    published2015-07-16
    reporterThis script is Copyright (C) 2015-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/84770
    titleCentOS 6 / 7 : java-1.8.0-openjdk (CESA-2015:1228) (Bar Mitzvah) (Logjam)
  • NASL familyOracle Linux Local Security Checks
    NASL idORACLELINUX_ELSA-2015-1228.NASL
    descriptionFrom Red Hat Security Advisory 2015:1228 : Updated java-1.8.0-openjdk packages that fix multiple security issues are now available for Red Hat Enterprise Linux 6 and 7. Red Hat Product Security has rated this update as having Important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The java-1.8.0-openjdk packages provide the OpenJDK 8 Java Runtime Environment and the OpenJDK 8 Java Software Development Kit. Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass Java sandbox restrictions. (CVE-2015-4760, CVE-2015-2628, CVE-2015-4731, CVE-2015-2590, CVE-2015-4732, CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) It was discovered that the GCM (Galois Counter Mode) implementation in the Security component of OpenJDK failed to properly perform a null check. This could cause the Java Virtual Machine to crash when an application performed encryption using a block cipher in the GCM mode. (CVE-2015-2659) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) Note: With this update, OpenJDK now disables RC4 TLS/SSL cipher suites by default to address the CVE-2015-2808 issue. Refer to Red Hat Bugzilla bug 1207101, linked to in the References section, for additional details about this change. A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them do decrypt all traffic. (CVE-2015-4000) Note: This update forces the TLS/SSL client implementation in OpenJDK to reject DH key sizes below 768 bits, which prevents sessions to be downgraded to export-grade keys. Refer to Red Hat Bugzilla bug 1223211, linked to in the References section, for additional details about this change. It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621, CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) Multiple insecure temporary file use issues were found in the way the Hotspot component in OpenJDK created performance statistics and error log files. A local attacker could possibly make a victim using OpenJDK overwrite arbitrary files using a symlink attack. Note: This issue was originally fixed as CVE-2015-0383, but the fix was regressed in the RHSA-2015:0809 advisory. (CVE-2015-3149) All users of java-1.8.0-openjdk are advised to upgrade to these updated packages, which resolve these issues. All running instances of OpenJDK Java must be restarted for the update to take effect.
    last seen2020-06-01
    modified2020-06-02
    plugin id84784
    published2015-07-16
    reporterThis script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/84784
    titleOracle Linux 6 / 7 : java-1.8.0-openjdk (ELSA-2015-1228) (Bar Mitzvah) (Logjam)

Redhat

advisories
rhsa
idRHSA-2015:1228
rpms
  • java-1.8.0-openjdk-1:1.8.0.51-0.b16.el6_6
  • java-1.8.0-openjdk-1:1.8.0.51-1.b16.ael7b_1
  • java-1.8.0-openjdk-1:1.8.0.51-1.b16.el7_1
  • java-1.8.0-openjdk-accessibility-1:1.8.0.51-1.b16.ael7b_1
  • java-1.8.0-openjdk-accessibility-1:1.8.0.51-1.b16.el7_1
  • java-1.8.0-openjdk-debuginfo-1:1.8.0.51-0.b16.el6_6
  • java-1.8.0-openjdk-debuginfo-1:1.8.0.51-1.b16.ael7b_1
  • java-1.8.0-openjdk-debuginfo-1:1.8.0.51-1.b16.el7_1
  • java-1.8.0-openjdk-demo-1:1.8.0.51-0.b16.el6_6
  • java-1.8.0-openjdk-demo-1:1.8.0.51-1.b16.ael7b_1
  • java-1.8.0-openjdk-demo-1:1.8.0.51-1.b16.el7_1
  • java-1.8.0-openjdk-devel-1:1.8.0.51-0.b16.el6_6
  • java-1.8.0-openjdk-devel-1:1.8.0.51-1.b16.ael7b_1
  • java-1.8.0-openjdk-devel-1:1.8.0.51-1.b16.el7_1
  • java-1.8.0-openjdk-headless-1:1.8.0.51-0.b16.el6_6
  • java-1.8.0-openjdk-headless-1:1.8.0.51-1.b16.ael7b_1
  • java-1.8.0-openjdk-headless-1:1.8.0.51-1.b16.el7_1
  • java-1.8.0-openjdk-javadoc-1:1.8.0.51-0.b16.el6_6
  • java-1.8.0-openjdk-javadoc-1:1.8.0.51-1.b16.ael7b_1
  • java-1.8.0-openjdk-javadoc-1:1.8.0.51-1.b16.el7_1
  • java-1.8.0-openjdk-src-1:1.8.0.51-0.b16.el6_6
  • java-1.8.0-openjdk-src-1:1.8.0.51-1.b16.ael7b_1
  • java-1.8.0-openjdk-src-1:1.8.0.51-1.b16.el7_1