Vulnerabilities > CVE-2015-2590
Attack vector
NETWORK Attack complexity
LOW Privileges required
NONE Confidentiality impact
HIGH Integrity impact
HIGH Availability impact
HIGH Summary
Unspecified vulnerability in Oracle Java SE 6u95, 7u80, and 8u45, and Java SE Embedded 7u75 and 8u33 allows remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to Libraries, a different vulnerability than CVE-2015-4732.
Vulnerable Configurations
Nessus
NASL family Oracle Linux Local Security Checks NASL id ORACLELINUX_ELSA-2015-1526.NASL description From Red Hat Security Advisory 2015:1526 : Updated java-1.6.0-openjdk packages that fix multiple security issues are now available for Red Hat Enterprise Linux 5, 6, and 7. Red Hat Product Security has rated this update as having Important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The java-1.6.0-openjdk packages provide the OpenJDK 6 Java Runtime Environment and the OpenJDK 6 Java Software Development Kit. Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass Java sandbox restrictions. (CVE-2015-4760, CVE-2015-2628, CVE-2015-4731, CVE-2015-2590, CVE-2015-4732, CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) Note: With this update, OpenJDK now disables RC4 TLS/SSL cipher suites by default to address the CVE-2015-2808 issue. Refer to Red Hat Bugzilla bug 1207101, linked to in the References section, for additional details about this change. A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them to decrypt all traffic. (CVE-2015-4000) Note: This update forces the TLS/SSL client implementation in OpenJDK to reject DH key sizes below 768 bits, which prevents sessions to be downgraded to export-grade keys. Refer to Red Hat Bugzilla bug 1223211, linked to in the References section, for additional details about this change. It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621, CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) All users of java-1.6.0-openjdk are advised to upgrade to these updated packages, which resolve these issues. All running instances of OpenJDK Java must be restarted for the update to take effect. last seen 2020-06-01 modified 2020-06-02 plugin id 85137 published 2015-07-31 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/85137 title Oracle Linux 5 / 6 / 7 : java-1.6.0-openjdk (ELSA-2015-1526) (Bar Mitzvah) (Logjam) code # # (C) Tenable Network Security, Inc. # # The descriptive text and package checks in this plugin were # extracted from Red Hat Security Advisory RHSA-2015:1526 and # Oracle Linux Security Advisory ELSA-2015-1526 respectively. # include("compat.inc"); if (description) { script_id(85137); script_version("2.13"); script_cvs_date("Date: 2019/09/27 13:00:36"); script_cve_id("CVE-2015-2590", "CVE-2015-2601", "CVE-2015-2621", "CVE-2015-2625", "CVE-2015-2628", "CVE-2015-2632", "CVE-2015-2808", "CVE-2015-4000", "CVE-2015-4731", "CVE-2015-4732", "CVE-2015-4733", "CVE-2015-4748", "CVE-2015-4749", "CVE-2015-4760"); script_xref(name:"RHSA", value:"2015:1526"); script_name(english:"Oracle Linux 5 / 6 / 7 : java-1.6.0-openjdk (ELSA-2015-1526) (Bar Mitzvah) (Logjam)"); script_summary(english:"Checks rpm output for the updated packages"); script_set_attribute( attribute:"synopsis", value:"The remote Oracle Linux host is missing one or more security updates." ); script_set_attribute( attribute:"description", value: "From Red Hat Security Advisory 2015:1526 : Updated java-1.6.0-openjdk packages that fix multiple security issues are now available for Red Hat Enterprise Linux 5, 6, and 7. Red Hat Product Security has rated this update as having Important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The java-1.6.0-openjdk packages provide the OpenJDK 6 Java Runtime Environment and the OpenJDK 6 Java Software Development Kit. Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass Java sandbox restrictions. (CVE-2015-4760, CVE-2015-2628, CVE-2015-4731, CVE-2015-2590, CVE-2015-4732, CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) Note: With this update, OpenJDK now disables RC4 TLS/SSL cipher suites by default to address the CVE-2015-2808 issue. Refer to Red Hat Bugzilla bug 1207101, linked to in the References section, for additional details about this change. A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them to decrypt all traffic. (CVE-2015-4000) Note: This update forces the TLS/SSL client implementation in OpenJDK to reject DH key sizes below 768 bits, which prevents sessions to be downgraded to export-grade keys. Refer to Red Hat Bugzilla bug 1223211, linked to in the References section, for additional details about this change. It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621, CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) All users of java-1.6.0-openjdk are advised to upgrade to these updated packages, which resolve these issues. All running instances of OpenJDK Java must be restarted for the update to take effect." ); script_set_attribute( attribute:"see_also", value:"https://oss.oracle.com/pipermail/el-errata/2015-July/005258.html" ); script_set_attribute( attribute:"see_also", value:"https://oss.oracle.com/pipermail/el-errata/2015-July/005259.html" ); script_set_attribute( attribute:"see_also", value:"https://oss.oracle.com/pipermail/el-errata/2015-July/005272.html" ); script_set_attribute( attribute:"solution", value:"Update the affected java-1.6.0-openjdk packages." ); script_set_cvss_base_vector("CVSS2#AV:N/AC:L/Au:N/C:C/I:C/A:C"); script_set_cvss_temporal_vector("CVSS2#E:H/RL:OF/RC:C"); script_set_cvss3_base_vector("CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N"); script_set_cvss3_temporal_vector("CVSS:3.0/E:H/RL:O/RC:C"); script_set_attribute(attribute:"exploitability_ease", value:"Exploits are available"); script_set_attribute(attribute:"exploit_available", value:"true"); script_set_attribute(attribute:"exploited_by_malware", value:"true"); script_set_attribute(attribute:"plugin_type", value:"local"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:oracle:linux:java-1.6.0-openjdk"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:oracle:linux:java-1.6.0-openjdk-demo"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:oracle:linux:java-1.6.0-openjdk-devel"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:oracle:linux:java-1.6.0-openjdk-javadoc"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:oracle:linux:java-1.6.0-openjdk-src"); script_set_attribute(attribute:"cpe", value:"cpe:/o:oracle:linux:5"); script_set_attribute(attribute:"cpe", value:"cpe:/o:oracle:linux:6"); script_set_attribute(attribute:"cpe", value:"cpe:/o:oracle:linux:7"); script_set_attribute(attribute:"vuln_publication_date", value:"2015/03/31"); script_set_attribute(attribute:"patch_publication_date", value:"2015/07/31"); script_set_attribute(attribute:"plugin_publication_date", value:"2015/07/31"); script_set_attribute(attribute:"in_the_news", value:"true"); script_set_attribute(attribute:"generated_plugin", value:"current"); script_end_attributes(); script_category(ACT_GATHER_INFO); script_copyright(english:"This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof."); script_family(english:"Oracle Linux Local Security Checks"); script_dependencies("ssh_get_info.nasl"); script_require_keys("Host/local_checks_enabled", "Host/OracleLinux", "Host/RedHat/release", "Host/RedHat/rpm-list"); exit(0); } include("audit.inc"); include("global_settings.inc"); include("rpm.inc"); if (!get_kb_item("Host/local_checks_enabled")) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED); if (!get_kb_item("Host/OracleLinux")) audit(AUDIT_OS_NOT, "Oracle Linux"); release = get_kb_item("Host/RedHat/release"); if (isnull(release) || !pregmatch(pattern: "Oracle (?:Linux Server|Enterprise Linux)", string:release)) audit(AUDIT_OS_NOT, "Oracle Linux"); os_ver = pregmatch(pattern: "Oracle (?:Linux Server|Enterprise Linux) .*release ([0-9]+(\.[0-9]+)?)", string:release); if (isnull(os_ver)) audit(AUDIT_UNKNOWN_APP_VER, "Oracle Linux"); os_ver = os_ver[1]; if (! preg(pattern:"^(5|6|7)([^0-9]|$)", string:os_ver)) audit(AUDIT_OS_NOT, "Oracle Linux 5 / 6 / 7", "Oracle Linux " + os_ver); if (!get_kb_item("Host/RedHat/rpm-list")) audit(AUDIT_PACKAGE_LIST_MISSING); cpu = get_kb_item("Host/cpu"); if (isnull(cpu)) audit(AUDIT_UNKNOWN_ARCH); if ("x86_64" >!< cpu && "ia64" >!< cpu && cpu !~ "^i[3-6]86$") audit(AUDIT_LOCAL_CHECKS_NOT_IMPLEMENTED, "Oracle Linux", cpu); flag = 0; if (rpm_check(release:"EL5", reference:"java-1.6.0-openjdk-1.6.0.36-1.13.8.1.0.1.el5_11")) flag++; if (rpm_check(release:"EL5", reference:"java-1.6.0-openjdk-demo-1.6.0.36-1.13.8.1.0.1.el5_11")) flag++; if (rpm_check(release:"EL5", reference:"java-1.6.0-openjdk-devel-1.6.0.36-1.13.8.1.0.1.el5_11")) flag++; if (rpm_check(release:"EL5", reference:"java-1.6.0-openjdk-javadoc-1.6.0.36-1.13.8.1.0.1.el5_11")) flag++; if (rpm_check(release:"EL5", reference:"java-1.6.0-openjdk-src-1.6.0.36-1.13.8.1.0.1.el5_11")) flag++; if (rpm_check(release:"EL6", reference:"java-1.6.0-openjdk-1.6.0.36-1.13.8.1.el6_7")) flag++; if (rpm_check(release:"EL6", reference:"java-1.6.0-openjdk-demo-1.6.0.36-1.13.8.1.el6_7")) flag++; if (rpm_check(release:"EL6", reference:"java-1.6.0-openjdk-devel-1.6.0.36-1.13.8.1.el6_7")) flag++; if (rpm_check(release:"EL6", reference:"java-1.6.0-openjdk-javadoc-1.6.0.36-1.13.8.1.el6_7")) flag++; if (rpm_check(release:"EL6", reference:"java-1.6.0-openjdk-src-1.6.0.36-1.13.8.1.el6_7")) flag++; if (rpm_check(release:"EL7", cpu:"x86_64", reference:"java-1.6.0-openjdk-1.6.0.36-1.13.8.1.el7_1")) flag++; if (rpm_check(release:"EL7", cpu:"x86_64", reference:"java-1.6.0-openjdk-demo-1.6.0.36-1.13.8.1.el7_1")) flag++; if (rpm_check(release:"EL7", cpu:"x86_64", reference:"java-1.6.0-openjdk-devel-1.6.0.36-1.13.8.1.el7_1")) flag++; if (rpm_check(release:"EL7", cpu:"x86_64", reference:"java-1.6.0-openjdk-javadoc-1.6.0.36-1.13.8.1.el7_1")) flag++; if (rpm_check(release:"EL7", cpu:"x86_64", reference:"java-1.6.0-openjdk-src-1.6.0.36-1.13.8.1.el7_1")) flag++; if (flag) { if (report_verbosity > 0) security_hole(port:0, extra:rpm_report_get()); else security_hole(0); exit(0); } else { tested = pkg_tests_get(); if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested); else audit(AUDIT_PACKAGE_NOT_INSTALLED, "java-1.6.0-openjdk / java-1.6.0-openjdk-demo / etc"); }
NASL family Scientific Linux Local Security Checks NASL id SL_20150715_JAVA_1_8_0_OPENJDK_ON_SL6_X.NASL description Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass Java sandbox restrictions. (CVE-2015-4760, CVE-2015-2628, CVE-2015-4731, CVE-2015-2590, CVE-2015-4732, CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) It was discovered that the GCM (Galois Counter Mode) implementation in the Security component of OpenJDK failed to properly perform a null check. This could cause the Java Virtual Machine to crash when an application performed encryption using a block cipher in the GCM mode. (CVE-2015-2659) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them do decrypt all traffic. (CVE-2015-4000) It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621, CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) Multiple insecure temporary file use issues were found in the way the Hotspot component in OpenJDK created performance statistics and error log files. A local attacker could possibly make a victim using OpenJDK overwrite arbitrary files using a symlink attack. Note: This issue was originally fixed as CVE-2015-0383, but the fix was regressed in the SLSA-2015:0809 advisory. (CVE-2015-3149) All running instances of OpenJDK Java must be restarted for the update to take effect. last seen 2020-03-18 modified 2015-07-16 plugin id 84793 published 2015-07-16 reporter This script is Copyright (C) 2015-2020 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/84793 title Scientific Linux Security Update : java-1.8.0-openjdk on SL6.x, SL7.x i386/x86_64 (20150715) (Bar Mitzvah) (Logjam) code # # (C) Tenable Network Security, Inc. # # The descriptive text is (C) Scientific Linux. # include("compat.inc"); if (description) { script_id(84793); script_version("2.12"); script_set_attribute(attribute:"plugin_modification_date", value:"2020/02/25"); script_cve_id("CVE-2015-0383", "CVE-2015-2590", "CVE-2015-2601", "CVE-2015-2621", "CVE-2015-2625", "CVE-2015-2628", "CVE-2015-2632", "CVE-2015-2659", "CVE-2015-2808", "CVE-2015-3149", "CVE-2015-4000", "CVE-2015-4731", "CVE-2015-4732", "CVE-2015-4733", "CVE-2015-4748", "CVE-2015-4749", "CVE-2015-4760"); script_name(english:"Scientific Linux Security Update : java-1.8.0-openjdk on SL6.x, SL7.x i386/x86_64 (20150715) (Bar Mitzvah) (Logjam)"); script_summary(english:"Checks rpm output for the updated packages"); script_set_attribute( attribute:"synopsis", value: "The remote Scientific Linux host is missing one or more security updates." ); script_set_attribute( attribute:"description", value: "Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass Java sandbox restrictions. (CVE-2015-4760, CVE-2015-2628, CVE-2015-4731, CVE-2015-2590, CVE-2015-4732, CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) It was discovered that the GCM (Galois Counter Mode) implementation in the Security component of OpenJDK failed to properly perform a null check. This could cause the Java Virtual Machine to crash when an application performed encryption using a block cipher in the GCM mode. (CVE-2015-2659) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them do decrypt all traffic. (CVE-2015-4000) It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621, CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) Multiple insecure temporary file use issues were found in the way the Hotspot component in OpenJDK created performance statistics and error log files. A local attacker could possibly make a victim using OpenJDK overwrite arbitrary files using a symlink attack. Note: This issue was originally fixed as CVE-2015-0383, but the fix was regressed in the SLSA-2015:0809 advisory. (CVE-2015-3149) All running instances of OpenJDK Java must be restarted for the update to take effect." ); # https://listserv.fnal.gov/scripts/wa.exe?A2=ind1507&L=scientific-linux-errata&F=&S=&P=8420 script_set_attribute( attribute:"see_also", value:"http://www.nessus.org/u?46895054" ); script_set_attribute(attribute:"solution", value:"Update the affected packages."); script_set_cvss_base_vector("CVSS2#AV:N/AC:L/Au:N/C:C/I:C/A:C"); script_set_cvss3_base_vector("CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:N"); script_set_attribute(attribute:"exploitability_ease", value:"Exploits are available"); script_set_attribute(attribute:"exploit_available", value:"true"); script_set_attribute(attribute:"exploited_by_malware", value:"true"); script_set_attribute(attribute:"plugin_type", value:"local"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:fermilab:scientific_linux:java-1.8.0-openjdk"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:fermilab:scientific_linux:java-1.8.0-openjdk-accessibility"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:fermilab:scientific_linux:java-1.8.0-openjdk-debuginfo"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:fermilab:scientific_linux:java-1.8.0-openjdk-demo"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:fermilab:scientific_linux:java-1.8.0-openjdk-devel"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:fermilab:scientific_linux:java-1.8.0-openjdk-headless"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:fermilab:scientific_linux:java-1.8.0-openjdk-javadoc"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:fermilab:scientific_linux:java-1.8.0-openjdk-src"); script_set_attribute(attribute:"cpe", value:"x-cpe:/o:fermilab:scientific_linux"); script_set_attribute(attribute:"vuln_publication_date", value:"2015/01/21"); script_set_attribute(attribute:"patch_publication_date", value:"2015/07/15"); script_set_attribute(attribute:"plugin_publication_date", value:"2015/07/16"); script_set_attribute(attribute:"in_the_news", value:"true"); script_set_attribute(attribute:"generated_plugin", value:"current"); script_end_attributes(); script_category(ACT_GATHER_INFO); script_copyright(english:"This script is Copyright (C) 2015-2020 and is owned by Tenable, Inc. or an Affiliate thereof."); script_family(english:"Scientific Linux Local Security Checks"); script_dependencies("ssh_get_info.nasl"); script_require_keys("Host/local_checks_enabled", "Host/cpu", "Host/RedHat/release", "Host/RedHat/rpm-list"); exit(0); } include("audit.inc"); include("global_settings.inc"); include("misc_func.inc"); include("rpm.inc"); if (!get_kb_item("Host/local_checks_enabled")) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED); release = get_kb_item("Host/RedHat/release"); if (isnull(release) || "Scientific Linux " >!< release) audit(AUDIT_HOST_NOT, "running Scientific Linux"); os_ver = pregmatch(pattern: "Scientific Linux.*release ([0-9]+(\.[0-9]+)?)", string:release); if (isnull(os_ver)) audit(AUDIT_UNKNOWN_APP_VER, "Scientific Linux"); os_ver = os_ver[1]; if (! preg(pattern:"^7([^0-9]|$)", string:os_ver)) audit(AUDIT_OS_NOT, "Scientific Linux 7.x", "Scientific Linux " + os_ver); if (!get_kb_item("Host/RedHat/rpm-list")) audit(AUDIT_PACKAGE_LIST_MISSING); cpu = get_kb_item("Host/cpu"); if (isnull(cpu)) audit(AUDIT_UNKNOWN_ARCH); if (cpu >!< "x86_64" && cpu !~ "^i[3-6]86$") audit(AUDIT_LOCAL_CHECKS_NOT_IMPLEMENTED, "Scientific Linux", cpu); flag = 0; if (rpm_check(release:"SL6", reference:"java-1.8.0-openjdk-1.8.0.51-0.b16.el6_6")) flag++; if (rpm_check(release:"SL6", reference:"java-1.8.0-openjdk-debuginfo-1.8.0.51-0.b16.el6_6")) flag++; if (rpm_check(release:"SL6", reference:"java-1.8.0-openjdk-demo-1.8.0.51-0.b16.el6_6")) flag++; if (rpm_check(release:"SL6", reference:"java-1.8.0-openjdk-devel-1.8.0.51-0.b16.el6_6")) flag++; if (rpm_check(release:"SL6", reference:"java-1.8.0-openjdk-headless-1.8.0.51-0.b16.el6_6")) flag++; if (rpm_check(release:"SL6", reference:"java-1.8.0-openjdk-javadoc-1.8.0.51-0.b16.el6_6")) flag++; if (rpm_check(release:"SL6", reference:"java-1.8.0-openjdk-src-1.8.0.51-0.b16.el6_6")) flag++; if (rpm_check(release:"SL7", cpu:"x86_64", reference:"java-1.8.0-openjdk-1.8.0.51-1.b16.el7_1")) flag++; if (rpm_check(release:"SL7", cpu:"x86_64", reference:"java-1.8.0-openjdk-accessibility-1.8.0.51-1.b16.el7_1")) flag++; if (rpm_check(release:"SL7", cpu:"x86_64", reference:"java-1.8.0-openjdk-debuginfo-1.8.0.51-1.b16.el7_1")) flag++; if (rpm_check(release:"SL7", cpu:"x86_64", reference:"java-1.8.0-openjdk-demo-1.8.0.51-1.b16.el7_1")) flag++; if (rpm_check(release:"SL7", cpu:"x86_64", reference:"java-1.8.0-openjdk-devel-1.8.0.51-1.b16.el7_1")) flag++; if (rpm_check(release:"SL7", cpu:"x86_64", reference:"java-1.8.0-openjdk-headless-1.8.0.51-1.b16.el7_1")) flag++; if (rpm_check(release:"SL7", reference:"java-1.8.0-openjdk-javadoc-1.8.0.51-1.b16.el7_1")) flag++; if (rpm_check(release:"SL7", cpu:"x86_64", reference:"java-1.8.0-openjdk-src-1.8.0.51-1.b16.el7_1")) flag++; if (flag) { security_report_v4( port : 0, severity : SECURITY_HOLE, extra : rpm_report_get() ); exit(0); } else { tested = pkg_tests_get(); if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested); else audit(AUDIT_PACKAGE_NOT_INSTALLED, "java-1.8.0-openjdk / java-1.8.0-openjdk-accessibility / etc"); }
NASL family Amazon Linux Local Security Checks NASL id ALA_ALAS-2015-571.NASL description Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass Java sandbox restrictions. (CVE-2015-4760 , CVE-2015-2628 , CVE-2015-4731 , CVE-2015-2590 , CVE-2015-4732 , CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) It was discovered that the GCM (Galois Counter Mode) implementation in the Security component of OpenJDK failed to properly perform a null check. This could cause the Java Virtual Machine to crash when an application performed encryption using a block cipher in the GCM mode. (CVE-2015-2659) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) Please note that with this update, OpenJDK now disables RC4 TLS/SSL cipher suites by default to address the CVE-2015-2808 issue. A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them do decrypt all traffic. (CVE-2015-4000) Please note that this update forces the TLS/SSL client implementation in OpenJDK to reject DH key sizes below 768 bits, which prevents sessions to be downgraded to export-grade keys. It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621 , CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) Multiple insecure temporary file use issues were found in the way the Hotspot component in OpenJDK created performance statistics and error log files. A local attacker could possibly make a victim using OpenJDK overwrite arbitrary files using a symlink attack. last seen 2020-06-01 modified 2020-06-02 plugin id 84931 published 2015-07-23 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/84931 title Amazon Linux AMI : java-1.8.0-openjdk (ALAS-2015-571) (Bar Mitzvah) (Logjam) code # # (C) Tenable Network Security, Inc. # # The descriptive text and package checks in this plugin were # extracted from Amazon Linux AMI Security Advisory ALAS-2015-571. # include("compat.inc"); if (description) { script_id(84931); script_version("2.10"); script_cvs_date("Date: 2019/10/16 10:34:21"); script_cve_id("CVE-2015-0383", "CVE-2015-2590", "CVE-2015-2601", "CVE-2015-2621", "CVE-2015-2625", "CVE-2015-2628", "CVE-2015-2632", "CVE-2015-2659", "CVE-2015-2808", "CVE-2015-3149", "CVE-2015-4000", "CVE-2015-4731", "CVE-2015-4732", "CVE-2015-4733", "CVE-2015-4748", "CVE-2015-4749", "CVE-2015-4760"); script_xref(name:"ALAS", value:"2015-571"); script_xref(name:"RHSA", value:"2015:1228"); script_name(english:"Amazon Linux AMI : java-1.8.0-openjdk (ALAS-2015-571) (Bar Mitzvah) (Logjam)"); script_summary(english:"Checks rpm output for the updated packages"); script_set_attribute( attribute:"synopsis", value:"The remote Amazon Linux AMI host is missing a security update." ); script_set_attribute( attribute:"description", value: "Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass Java sandbox restrictions. (CVE-2015-4760 , CVE-2015-2628 , CVE-2015-4731 , CVE-2015-2590 , CVE-2015-4732 , CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) It was discovered that the GCM (Galois Counter Mode) implementation in the Security component of OpenJDK failed to properly perform a null check. This could cause the Java Virtual Machine to crash when an application performed encryption using a block cipher in the GCM mode. (CVE-2015-2659) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) Please note that with this update, OpenJDK now disables RC4 TLS/SSL cipher suites by default to address the CVE-2015-2808 issue. A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them do decrypt all traffic. (CVE-2015-4000) Please note that this update forces the TLS/SSL client implementation in OpenJDK to reject DH key sizes below 768 bits, which prevents sessions to be downgraded to export-grade keys. It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621 , CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) Multiple insecure temporary file use issues were found in the way the Hotspot component in OpenJDK created performance statistics and error log files. A local attacker could possibly make a victim using OpenJDK overwrite arbitrary files using a symlink attack." ); script_set_attribute( attribute:"see_also", value:"https://alas.aws.amazon.com/ALAS-2015-571.html" ); script_set_attribute( attribute:"solution", value:"Run 'yum update java-1.8.0-openjdk' to update your system." ); script_set_cvss_base_vector("CVSS2#AV:N/AC:L/Au:N/C:C/I:C/A:C"); script_set_cvss3_base_vector("CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:N"); script_set_attribute(attribute:"exploitability_ease", value:"Exploits are available"); script_set_attribute(attribute:"exploit_available", value:"true"); script_set_attribute(attribute:"exploited_by_malware", value:"true"); script_set_attribute(attribute:"plugin_type", value:"local"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:amazon:linux:java-1.8.0-openjdk"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:amazon:linux:java-1.8.0-openjdk-debuginfo"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:amazon:linux:java-1.8.0-openjdk-demo"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:amazon:linux:java-1.8.0-openjdk-devel"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:amazon:linux:java-1.8.0-openjdk-headless"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:amazon:linux:java-1.8.0-openjdk-javadoc"); script_set_attribute(attribute:"cpe", value:"p-cpe:/a:amazon:linux:java-1.8.0-openjdk-src"); script_set_attribute(attribute:"cpe", value:"cpe:/o:amazon:linux"); script_set_attribute(attribute:"vuln_publication_date", value:"2015/01/21"); script_set_attribute(attribute:"patch_publication_date", value:"2015/07/22"); script_set_attribute(attribute:"plugin_publication_date", value:"2015/07/23"); script_set_attribute(attribute:"in_the_news", value:"true"); script_set_attribute(attribute:"generated_plugin", value:"current"); script_end_attributes(); script_category(ACT_GATHER_INFO); script_copyright(english:"This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof."); script_family(english:"Amazon Linux Local Security Checks"); script_dependencies("ssh_get_info.nasl"); script_require_keys("Host/local_checks_enabled", "Host/AmazonLinux/release", "Host/AmazonLinux/rpm-list"); exit(0); } include("audit.inc"); include("global_settings.inc"); include("rpm.inc"); if (!get_kb_item("Host/local_checks_enabled")) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED); release = get_kb_item("Host/AmazonLinux/release"); if (isnull(release) || !strlen(release)) audit(AUDIT_OS_NOT, "Amazon Linux"); os_ver = pregmatch(pattern: "^AL(A|\d)", string:release); if (isnull(os_ver)) audit(AUDIT_UNKNOWN_APP_VER, "Amazon Linux"); os_ver = os_ver[1]; if (os_ver != "A") { if (os_ver == 'A') os_ver = 'AMI'; audit(AUDIT_OS_NOT, "Amazon Linux AMI", "Amazon Linux " + os_ver); } if (!get_kb_item("Host/AmazonLinux/rpm-list")) audit(AUDIT_PACKAGE_LIST_MISSING); flag = 0; if (rpm_check(release:"ALA", reference:"java-1.8.0-openjdk-1.8.0.51-1.b16.6.amzn1")) flag++; if (rpm_check(release:"ALA", reference:"java-1.8.0-openjdk-debuginfo-1.8.0.51-1.b16.6.amzn1")) flag++; if (rpm_check(release:"ALA", reference:"java-1.8.0-openjdk-demo-1.8.0.51-1.b16.6.amzn1")) flag++; if (rpm_check(release:"ALA", reference:"java-1.8.0-openjdk-devel-1.8.0.51-1.b16.6.amzn1")) flag++; if (rpm_check(release:"ALA", reference:"java-1.8.0-openjdk-headless-1.8.0.51-1.b16.6.amzn1")) flag++; if (rpm_check(release:"ALA", reference:"java-1.8.0-openjdk-javadoc-1.8.0.51-1.b16.6.amzn1")) flag++; if (rpm_check(release:"ALA", reference:"java-1.8.0-openjdk-src-1.8.0.51-1.b16.6.amzn1")) flag++; if (flag) { if (report_verbosity > 0) security_hole(port:0, extra:rpm_report_get()); else security_hole(0); exit(0); } else { tested = pkg_tests_get(); if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested); else audit(AUDIT_PACKAGE_NOT_INSTALLED, "java-1.8.0-openjdk / java-1.8.0-openjdk-debuginfo / etc"); }
NASL family SuSE Local Security Checks NASL id OPENSUSE-2015-512.NASL description OpenJDK was updated to 2.6.1 - OpenJDK 8u51 to fix security issues and bugs. The following vulnerabilities were fixed : - CVE-2015-2590: Easily exploitable vulnerability in the Libraries component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2597: Easily exploitable vulnerability in the Install component requiring logon to Operating System. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2601: Easily exploitable vulnerability in the JCE component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2613: Easily exploitable vulnerability in the JCE component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java SE, Java SE Embedded accessible data. - CVE-2015-2619: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2621: Easily exploitable vulnerability in the JMX component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2625: Very difficult to exploit vulnerability in the JSSE component allowed successful unauthenticated network attacks via SSL/TLS. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2627: Very difficult to exploit vulnerability in the Install component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2628: Easily exploitable vulnerability in the CORBA component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2632: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2637: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2638: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2659: Easily exploitable vulnerability in the Security component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized ability to cause a partial denial of service (partial DOS). - CVE-2015-2664: Difficult to exploit vulnerability in the Deployment component requiring logon to Operating System. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2808: Very difficult to exploit vulnerability in the JSSE component allowed successful unauthenticated network attacks via SSL/TLS. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java accessible data as well as read access to a subset of Java accessible data. - CVE-2015-4000: Very difficult to exploit vulnerability in the JSSE component allowed successful unauthenticated network attacks via SSL/TLS. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java accessible data as well as read access to a subset of Java Embedded accessible data. - CVE-2015-4729: Very difficult to exploit vulnerability in the Deployment component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java SE accessible data as well as read access to a subset of Java SE accessible data. - CVE-2015-4731: Easily exploitable vulnerability in the JMX component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4732: Easily exploitable vulnerability in the Libraries component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4733: Easily exploitable vulnerability in the RMI component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4736: Difficult to exploit vulnerability in the Deployment component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4748: Very difficult to exploit vulnerability in the Security component allowed successful unauthenticated network attacks via OCSP. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4749: Difficult to exploit vulnerability in the JNDI component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized ability to cause a partial denial of service (partial DOS). - CVE-2015-4760: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. last seen 2020-06-05 modified 2015-07-27 plugin id 85002 published 2015-07-27 reporter This script is Copyright (C) 2015-2020 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/85002 title openSUSE Security Update : java-1_8_0-openjdk (openSUSE-2015-512) (Bar Mitzvah) (Logjam) NASL family Red Hat Local Security Checks NASL id REDHAT-RHSA-2015-1242.NASL description Updated java-1.7.0-oracle packages that fix several security issues are now available for Oracle Java for Red Hat Enterprise Linux 5, 6, and 7. Red Hat Product Security has rated this update as having Critical security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. Oracle Java SE version 7 includes the Oracle Java Runtime Environment and the Oracle Java Software Development Kit. This update fixes several vulnerabilities in the Oracle Java Runtime Environment and the Oracle Java Software Development Kit. Further information about these flaws can be found on the Oracle Java SE Critical Patch Update Advisory page, listed in the References section. (CVE-2015-2590, CVE-2015-2596, CVE-2015-2601, CVE-2015-2613, CVE-2015-2619, CVE-2015-2621, CVE-2015-2625, CVE-2015-2627, CVE-2015-2628, CVE-2015-2632, CVE-2015-2637, CVE-2015-2638, CVE-2015-2664, CVE-2015-2808, CVE-2015-4000, CVE-2015-4729, CVE-2015-4731, CVE-2015-4732, CVE-2015-4733, CVE-2015-4736, CVE-2015-4748, CVE-2015-4749, CVE-2015-4760) Note: With this update, Oracle JDK now disables RC4 TLS/SSL cipher suites by default to address the CVE-2015-2808 issue. Refer to Red Hat Bugzilla bug 1207101, linked to in the References section, for additional details about this change. Note: This update forces the TLS/SSL client implementation in Oracle JDK to reject DH key sizes below 768 bits to address the CVE-2015-4000 issue. Refer to Red Hat Bugzilla bug 1223211, linked to in the References section, for additional details about this change. All users of java-1.7.0-oracle are advised to upgrade to these updated packages, which provide Oracle Java 7 Update 85 and resolve these issues. All running instances of Oracle Java must be restarted for the update to take effect. last seen 2020-06-01 modified 2020-06-02 plugin id 84872 published 2015-07-20 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/84872 title RHEL 5 / 6 / 7 : java-1.7.0-oracle (RHSA-2015:1242) (Bar Mitzvah) (Logjam) NASL family F5 Networks Local Security Checks NASL id F5_BIGIP_SOL17079.NASL description Unspecified vulnerability in Oracle Java SE 6u95, 7u80, and 8u45, and Java SE Embedded 7u75 and 8u33 allows remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to Libraries, a different vulnerability than CVE-2015-4732. last seen 2020-06-01 modified 2020-06-02 plugin id 91328 published 2016-05-26 reporter This script is Copyright (C) 2016-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/91328 title F5 Networks BIG-IP : Java SE vulnerabilities (SOL17079) NASL family Red Hat Local Security Checks NASL id REDHAT-RHSA-2015-1228.NASL description Updated java-1.8.0-openjdk packages that fix multiple security issues are now available for Red Hat Enterprise Linux 6 and 7. Red Hat Product Security has rated this update as having Important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The java-1.8.0-openjdk packages provide the OpenJDK 8 Java Runtime Environment and the OpenJDK 8 Java Software Development Kit. Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass Java sandbox restrictions. (CVE-2015-4760, CVE-2015-2628, CVE-2015-4731, CVE-2015-2590, CVE-2015-4732, CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) It was discovered that the GCM (Galois Counter Mode) implementation in the Security component of OpenJDK failed to properly perform a null check. This could cause the Java Virtual Machine to crash when an application performed encryption using a block cipher in the GCM mode. (CVE-2015-2659) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) Note: With this update, OpenJDK now disables RC4 TLS/SSL cipher suites by default to address the CVE-2015-2808 issue. Refer to Red Hat Bugzilla bug 1207101, linked to in the References section, for additional details about this change. A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them do decrypt all traffic. (CVE-2015-4000) Note: This update forces the TLS/SSL client implementation in OpenJDK to reject DH key sizes below 768 bits, which prevents sessions to be downgraded to export-grade keys. Refer to Red Hat Bugzilla bug 1223211, linked to in the References section, for additional details about this change. It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621, CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) Multiple insecure temporary file use issues were found in the way the Hotspot component in OpenJDK created performance statistics and error log files. A local attacker could possibly make a victim using OpenJDK overwrite arbitrary files using a symlink attack. Note: This issue was originally fixed as CVE-2015-0383, but the fix was regressed in the RHSA-2015:0809 advisory. (CVE-2015-3149) All users of java-1.8.0-openjdk are advised to upgrade to these updated packages, which resolve these issues. All running instances of OpenJDK Java must be restarted for the update to take effect. last seen 2020-06-01 modified 2020-06-02 plugin id 84787 published 2015-07-16 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/84787 title RHEL 6 / 7 : java-1.8.0-openjdk (RHSA-2015:1228) (Bar Mitzvah) (Logjam) NASL family SuSE Local Security Checks NASL id SUSE_SU-2015-1375-1.NASL description java-1_7_0-ibm was updated to fix 21 security issues. These security issues were fixed : - CVE-2015-4729: Unspecified vulnerability in Oracle Java SE 7u80 and 8u45 allowed remote attackers to affect confidentiality and integrity via unknown vectors related to Deployment (bsc#938895). - CVE-2015-4748: Unspecified vulnerability in Oracle Java SE 6u95, 7u80, and 8u45; JRockit R28.3.6; and Java SE Embedded 7u75 and Embedded 8u33 allowed remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to Security (bsc#938895). - CVE-2015-2664: Unspecified vulnerability in Oracle Java SE 6u95, 7u80, and 8u45 allowed local users to affect confidentiality, integrity, and availability via unknown vectors related to Deployment (bsc#938895). - CVE-2015-0192: Unspecified vulnerability in IBM Java 8 before SR1, 7 R1 before SR2 FP11, 7 before SR9, 6 R1 before SR8 FP4, 6 before SR16 FP4, and 5.0 before SR16 FP10 allowed remote attackers to gain privileges via unknown vectors related to the Java Virtual Machine (bsc#938895). - CVE-2015-2613: Unspecified vulnerability in Oracle Java SE 7u80 and 8u45, and Java SE Embedded 7u75 and 8u33 allowed remote attackers to affect confidentiality via vectors related to JCE (bsc#938895). - CVE-2015-4731: Unspecified vulnerability in Oracle Java SE 6u95, 7u80, and 8u45; Java SE Embedded 7u75; and Java SE Embedded 8u33 allowed remote attackers to affect confidentiality, integrity, and availability via vectors related to JMX (bsc#938895). - CVE-2015-2637: Unspecified vulnerability in Oracle Java SE 6u95, 7u80, and 8u45; JavaFX 2.2.80; and Java SE Embedded 7u75 and 8u33 allowed remote attackers to affect confidentiality via unknown vectors related to 2D (bsc#938895). - CVE-2015-4733: Unspecified vulnerability in Oracle Java SE 6u95, 7u80, and 8u45, and Java SE Embedded 7u75 and 8u33 allowed remote attackers to affect confidentiality, integrity, and availability via vectors related to RMI (bsc#938895). - CVE-2015-4732: Unspecified vulnerability in Oracle Java SE 6u95, 7u80, and 8u45, and Java SE Embedded 7u75 and 8u33 allowed remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to Libraries, a different vulnerability than CVE-2015-2590 (bsc#938895). - CVE-2015-2621: Unspecified vulnerability in Oracle Java SE 6u95, 7u80, and 8u45, and Java SE Embedded 7u75 and 8u33, allowed remote attackers to affect confidentiality via vectors related to JMX (bsc#938895). - CVE-2015-2619: Unspecified vulnerability in Oracle Java SE 7u80 and 8u45, JavaFX 2.2.80, and Java SE Embedded 7u75 and 8u33 allowed remote attackers to affect confidentiality via unknown vectors related to 2D (bsc#938895). - CVE-2015-2590: Unspecified vulnerability in Oracle Java SE 6u95, 7u80, and 8u45, and Java SE Embedded 7u75 and 8u33 allowed remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to Libraries, a different vulnerability than CVE-2015-4732 (bsc#938895). - CVE-2015-2638: Unspecified vulnerability in Oracle Java SE 6u95, 7u80, and 8u45; JavaFX 2.2.80; and Java SE Embedded 7u75 and 8u33 allowed remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to 2D (bsc#938895). - CVE-2015-2625: Unspecified vulnerability in Oracle Java SE 6u95, 7u80, and 8u45; JRockit R28.3.6; and Java SE Embedded 7u75 and 8u33 allowed remote attackers to affect confidentiality via vectors related to JSSE (bsc#938895). - CVE-2015-2632: Unspecified vulnerability in Oracle Java SE 6u95, 7u80, and 8u45 allowed remote attackers to affect confidentiality via unknown vectors related to 2D (bsc#938895). - CVE-2015-1931: Unspecified vulnerability (bsc#938895). - CVE-2015-4760: Unspecified vulnerability in Oracle Java SE 6u95, 7u80, and 8u45 allowed remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to 2D (bsc#938895). - CVE-2015-4000: The TLS protocol 1.2 and earlier, when a DHE_EXPORT ciphersuite is enabled on a server but not on a client, did not properly convey a DHE_EXPORT choice, which allowed man-in-the-middle attackers to conduct cipher-downgrade attacks by rewriting a ClientHello with DHE replaced by DHE_EXPORT and then rewriting a ServerHello with DHE_EXPORT replaced by DHE, aka the last seen 2020-06-01 modified 2020-06-02 plugin id 85379 published 2015-08-13 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/85379 title SUSE SLES11 Security Update : java-1_7_0-ibm (SUSE-SU-2015:1375-1) (Bar Mitzvah) (Logjam) NASL family Debian Local Security Checks NASL id DEBIAN_DSA-3316.NASL description Several vulnerabilities have been discovered in OpenJDK, an implementation of the Oracle Java platform, resulting in the execution of arbitrary code, breakouts of the Java sandbox, information disclosure, denial of service or insecure cryptography. last seen 2020-06-01 modified 2020-06-02 plugin id 85031 published 2015-07-28 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/85031 title Debian DSA-3316-1 : openjdk-7 - security update (Bar Mitzvah) (Logjam) NASL family Scientific Linux Local Security Checks NASL id SL_20150730_JAVA_1_6_0_OPENJDK_ON_SL5_X.NASL description Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass Java sandbox restrictions. (CVE-2015-4760, CVE-2015-2628, CVE-2015-4731, CVE-2015-2590, CVE-2015-4732, CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them to decrypt all traffic. (CVE-2015-4000) It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621, CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) All running instances of OpenJDK Java must be restarted for the update to take effect. last seen 2020-03-18 modified 2015-08-04 plugin id 85212 published 2015-08-04 reporter This script is Copyright (C) 2015-2020 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/85212 title Scientific Linux Security Update : java-1.6.0-openjdk on SL5.x, SL6.x, SL7.x i386/x86_64 (20150730) (Bar Mitzvah) (Logjam) NASL family SuSE Local Security Checks NASL id OPENSUSE-2015-511.NASL description OpenJDK was updated to 2.6.1 - OpenJDK 7u85 to fix security issues and bugs. The following vulnerabilities were fixed : - CVE-2015-2590: Easily exploitable vulnerability in the Libraries component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2596: Difficult to exploit vulnerability in the Hotspot component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java accessible data. - CVE-2015-2597: Easily exploitable vulnerability in the Install component requiring logon to Operating System. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2601: Easily exploitable vulnerability in the JCE component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2613: Easily exploitable vulnerability in the JCE component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java SE, Java SE Embedded accessible data. - CVE-2015-2619: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2621: Easily exploitable vulnerability in the JMX component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2625: Very difficult to exploit vulnerability in the JSSE component allowed successful unauthenticated network attacks via SSL/TLS. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2627: Very difficult to exploit vulnerability in the Install component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2628: Easily exploitable vulnerability in the CORBA component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2632: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2637: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2638: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2664: Difficult to exploit vulnerability in the Deployment component requiring logon to Operating System. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2808: Very difficult to exploit vulnerability in the JSSE component allowed successful unauthenticated network attacks via SSL/TLS. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java accessible data as well as read access to a subset of Java accessible data. - CVE-2015-4000: Very difficult to exploit vulnerability in the JSSE component allowed successful unauthenticated network attacks via SSL/TLS. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java accessible data as well as read access to a subset of Java Embedded accessible data. - CVE-2015-4729: Very difficult to exploit vulnerability in the Deployment component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java SE accessible data as well as read access to a subset of Java SE accessible data. - CVE-2015-4731: Easily exploitable vulnerability in the JMX component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4732: Easily exploitable vulnerability in the Libraries component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4733: Easily exploitable vulnerability in the RMI component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4736: Difficult to exploit vulnerability in the Deployment component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4748: Very difficult to exploit vulnerability in the Security component allowed successful unauthenticated network attacks via OCSP. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4749: Difficult to exploit vulnerability in the JNDI component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized ability to cause a partial denial of service (partial DOS). - CVE-2015-4760: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. last seen 2020-06-05 modified 2015-07-27 plugin id 85001 published 2015-07-27 reporter This script is Copyright (C) 2015-2020 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/85001 title openSUSE Security Update : java-1_7_0-openjdk (openSUSE-2015-511) (Bar Mitzvah) (Logjam) NASL family SuSE Local Security Checks NASL id SUSE_SU-2015-1345-1.NASL description IBM Java was updated to 6.0-16.7 to fix several security issues. The following vulnerabilities were fixed : - CVE-2015-1931: IBM Java Security Components store plain text data in memory dumps, which could allow a local attacker to obtain information to aid in further attacks against the system. - CVE-2015-2590: Easily exploitable vulnerability in the Libraries component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2601: Easily exploitable vulnerability in the JCE component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2621: Easily exploitable vulnerability in the JMX component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2625: Very difficult to exploit vulnerability in the JSSE component allowed successful unauthenticated network attacks via SSL/TLS. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2632: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2637: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2638: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2664: Difficult to exploit vulnerability in the Deployment component requiring logon to Operating System. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2808: Very difficult to exploit vulnerability in the JSSE component allowed successful unauthenticated network attacks via SSL/TLS. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java accessible data as well as read access to a subset of Java accessible data. - CVE-2015-4000: Very difficult to exploit vulnerability in the JSSE component allowed successful unauthenticated network attacks via SSL/TLS. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java accessible data as well as read access to a subset of Java Embedded accessible data. - CVE-2015-4731: Easily exploitable vulnerability in the JMX component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4732: Easily exploitable vulnerability in the Libraries component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4733: Easily exploitable vulnerability in the RMI component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4748: Very difficult to exploit vulnerability in the Security component allowed successful unauthenticated network attacks via OCSP. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4749: Difficult to exploit vulnerability in the JNDI component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized ability to cause a partial denial of service (partial DOS). - CVE-2015-4760: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. The update package also includes non-security fixes. See advisory for details. Note that Tenable Network Security has extracted the preceding description block directly from the SUSE security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues. last seen 2020-03-24 modified 2019-01-02 plugin id 119969 published 2019-01-02 reporter This script is Copyright (C) 2019-2020 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/119969 title SUSE SLES12 Security Update : java-1_6_0-ibm (SUSE-SU-2015:1345-1) (Bar Mitzvah) (Logjam) NASL family Red Hat Local Security Checks NASL id REDHAT-RHSA-2015-1241.NASL description Updated java-1.8.0-oracle packages that fix several security issues are now available for Oracle Java for Red Hat Enterprise Linux 6 and 7. Red Hat Product Security has rated this update as having Critical security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. Oracle Java SE version 8 includes the Oracle Java Runtime Environment and the Oracle Java Software Development Kit. This update fixes several vulnerabilities in the Oracle Java Runtime Environment and the Oracle Java Software Development Kit. Further information about these flaws can be found on the Oracle Java SE Critical Patch Update Advisory page, listed in the References section. (CVE-2015-2590, CVE-2015-2601, CVE-2015-2613, CVE-2015-2619, CVE-2015-2621, CVE-2015-2625, CVE-2015-2627, CVE-2015-2628, CVE-2015-2632, CVE-2015-2637, CVE-2015-2638, CVE-2015-2659, CVE-2015-2664, CVE-2015-2808, CVE-2015-4000, CVE-2015-4729, CVE-2015-4731, CVE-2015-4732, CVE-2015-4733, CVE-2015-4736, CVE-2015-4748, CVE-2015-4749, CVE-2015-4760) Note: With this update, Oracle JDK now disables RC4 TLS/SSL cipher suites by default to address the CVE-2015-2808 issue. Refer to Red Hat Bugzilla bug 1207101, linked to in the References section, for additional details about this change. Note: This update forces the TLS/SSL client implementation in Oracle JDK to reject DH key sizes below 768 bits to address the CVE-2015-4000 issue. Refer to Red Hat Bugzilla bug 1223211, linked to in the References section, for additional details about this change. All users of java-1.8.0-oracle are advised to upgrade to these updated packages, which provide Oracle Java 8 Update 51 and resolve these issues. All running instances of Oracle Java must be restarted for the update to take effect. last seen 2020-06-01 modified 2020-06-02 plugin id 84871 published 2015-07-20 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/84871 title RHEL 6 / 7 : java-1.8.0-oracle (RHSA-2015:1241) (Bar Mitzvah) (Logjam) NASL family Red Hat Local Security Checks NASL id REDHAT-RHSA-2015-1604.NASL description Updated java-1.6.0-ibm packages that fix several security issues are now available for Red Hat Satellite 5.6 and 5.7. Red Hat Product Security has rated this update as having Moderate security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. IBM Java SE version 6 includes the IBM Java Runtime Environment and the IBM Java Software Development Kit. This update fixes several vulnerabilities in the IBM Java Runtime Environment and the IBM Java Software Development Kit. Further information about these flaws can be found on the IBM Java Security alerts page, listed in the References section. (CVE-2015-1931, CVE-2015-2590, CVE-2015-2601, CVE-2015-2621, CVE-2015-2625, CVE-2015-2632, CVE-2015-2637, CVE-2015-2638, CVE-2015-2664, CVE-2015-4000, CVE-2015-4731, CVE-2015-4732, CVE-2015-4733, CVE-2015-4748, CVE-2015-4749, CVE-2015-4760) Note: This update forces the TLS/SSL client implementation in IBM JDK to reject DH key sizes below 768 bits to address the CVE-2015-4000 issue. Refer to Red Hat Bugzilla bug 1223211, linked to in the References section, for additional details about this change. Users of Red Hat Satellite 5.6 and 5.7 are advised to upgrade to these updated packages, which contain the IBM Java SE 6 SR16-FP7 release. For this update to take effect, Red Hat Satellite must be restarted ( last seen 2020-06-01 modified 2020-06-02 plugin id 85373 published 2015-08-13 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/85373 title RHEL 5 / 6 : Red Hat Satellite IBM Java Runtime (RHSA-2015:1604) (Logjam) NASL family CentOS Local Security Checks NASL id CENTOS_RHSA-2015-1228.NASL description Updated java-1.8.0-openjdk packages that fix multiple security issues are now available for Red Hat Enterprise Linux 6 and 7. Red Hat Product Security has rated this update as having Important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The java-1.8.0-openjdk packages provide the OpenJDK 8 Java Runtime Environment and the OpenJDK 8 Java Software Development Kit. Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass Java sandbox restrictions. (CVE-2015-4760, CVE-2015-2628, CVE-2015-4731, CVE-2015-2590, CVE-2015-4732, CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) It was discovered that the GCM (Galois Counter Mode) implementation in the Security component of OpenJDK failed to properly perform a null check. This could cause the Java Virtual Machine to crash when an application performed encryption using a block cipher in the GCM mode. (CVE-2015-2659) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) Note: With this update, OpenJDK now disables RC4 TLS/SSL cipher suites by default to address the CVE-2015-2808 issue. Refer to Red Hat Bugzilla bug 1207101, linked to in the References section, for additional details about this change. A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them do decrypt all traffic. (CVE-2015-4000) Note: This update forces the TLS/SSL client implementation in OpenJDK to reject DH key sizes below 768 bits, which prevents sessions to be downgraded to export-grade keys. Refer to Red Hat Bugzilla bug 1223211, linked to in the References section, for additional details about this change. It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621, CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) Multiple insecure temporary file use issues were found in the way the Hotspot component in OpenJDK created performance statistics and error log files. A local attacker could possibly make a victim using OpenJDK overwrite arbitrary files using a symlink attack. Note: This issue was originally fixed as CVE-2015-0383, but the fix was regressed in the RHSA-2015:0809 advisory. (CVE-2015-3149) All users of java-1.8.0-openjdk are advised to upgrade to these updated packages, which resolve these issues. All running instances of OpenJDK Java must be restarted for the update to take effect. last seen 2020-06-01 modified 2020-06-02 plugin id 84770 published 2015-07-16 reporter This script is Copyright (C) 2015-2020 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/84770 title CentOS 6 / 7 : java-1.8.0-openjdk (CESA-2015:1228) (Bar Mitzvah) (Logjam) NASL family Red Hat Local Security Checks NASL id REDHAT-RHSA-2015-1485.NASL description Updated java-1.7.1-ibm packages that fix several security issues are now available for Red Hat Enterprise Linux 6 and 7 Supplementary. Red Hat Product Security has rated this update as having Critical security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. IBM Java SE version 7 Release 1 includes the IBM Java Runtime Environment and the IBM Java Software Development Kit. This update fixes several vulnerabilities in the IBM Java Runtime Environment and the IBM Java Software Development Kit. Further information about these flaws can be found on the IBM Java Security alerts page, listed in the References section. (CVE-2015-1931, CVE-2015-2590, CVE-2015-2601, CVE-2015-2613, CVE-2015-2619, CVE-2015-2621, CVE-2015-2625, CVE-2015-2632, CVE-2015-2637, CVE-2015-2638, CVE-2015-2664, CVE-2015-4000, CVE-2015-4729, CVE-2015-4731, CVE-2015-4732, CVE-2015-4733, CVE-2015-4736, CVE-2015-4748, CVE-2015-4749, CVE-2015-4760) Note: This update forces the TLS/SSL client implementation in IBM JDK to reject DH key sizes below 768 bits to address the CVE-2015-4000 issue. Refer to Red Hat Bugzilla bug 1223211, linked to in the References section, for additional details about this change. All users of java-1.7.1-ibm are advised to upgrade to these updated packages, containing the IBM Java SE 7R1 SR3-FP10 release. All running instances of IBM Java must be restarted for the update to take effect. last seen 2020-06-01 modified 2020-06-02 plugin id 84955 published 2015-07-23 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/84955 title RHEL 6 / 7 : java-1.7.1-ibm (RHSA-2015:1485) (Logjam) NASL family Ubuntu Local Security Checks NASL id UBUNTU_USN-2706-1.NASL description Several vulnerabilities were discovered in the OpenJDK JRE related to information disclosure, data integrity, and availability. An attacker could exploit these to cause a denial of service or expose sensitive data over the network. (CVE-2015-2590, CVE-2015-2628, CVE-2015-4731, CVE-2015-4732, CVE-2015-4733, CVE-2015-4760, CVE-2015-4748) Several vulnerabilities were discovered in the cryptographic components of the OpenJDK JRE. An attacker could exploit these to expose sensitive data over the network. (CVE-2015-2601, CVE-2015-2808, CVE-2015-4000, CVE-2015-2625, CVE-2015-2613) As a security improvement, this update modifies OpenJDK behavior to disable RC4 TLS/SSL cipher suites by default. As a security improvement, this update modifies OpenJDK behavior to reject DH key sizes below 768 bits by default, preventing a possible downgrade attack. Several vulnerabilities were discovered in the OpenJDK JRE related to information disclosure. An attacker could exploit these to expose sensitive data over the network. (CVE-2015-2621, CVE-2015-2632) A vulnerability was discovered with how the JNDI component of the OpenJDK JRE handles DNS resolutions. A remote attacker could exploit this to cause a denial of service. (CVE-2015-4749). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues. last seen 2020-06-01 modified 2020-06-02 plugin id 85265 published 2015-08-07 reporter Ubuntu Security Notice (C) 2015-2019 Canonical, Inc. / NASL script (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/85265 title Ubuntu 12.04 LTS : openjdk-6 vulnerabilities (USN-2706-1) (Bar Mitzvah) (Logjam) NASL family Scientific Linux Local Security Checks NASL id SL_20150715_JAVA_1_7_0_OPENJDK_ON_SL5_X.NASL description Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass certain Java sandbox restrictions. (CVE-2015-4760, CVE-2015-2628, CVE-2015-4731, CVE-2015-2590, CVE-2015-4732, CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them do decrypt all traffic. (CVE-2015-4000) It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621, CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) All running instances of OpenJDK Java must be restarted for the update to take effect. last seen 2020-03-18 modified 2015-07-16 plugin id 84791 published 2015-07-16 reporter This script is Copyright (C) 2015-2020 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/84791 title Scientific Linux Security Update : java-1.7.0-openjdk on SL5.x i386/x86_64 (20150715) (Bar Mitzvah) (Logjam) NASL family Ubuntu Local Security Checks NASL id UBUNTU_USN-2696-1.NASL description Several vulnerabilities were discovered in the OpenJDK JRE related to information disclosure, data integrity, and availability. An attacker could exploit these to cause a denial of service or expose sensitive data over the network. (CVE-2015-2590, CVE-2015-2628, CVE-2015-4731, CVE-2015-4732, CVE-2015-4733, CVE-2015-4760, CVE-2015-4748) Several vulnerabilities were discovered in the cryptographic components of the OpenJDK JRE. An attacker could exploit these to expose sensitive data over the network. (CVE-2015-2601, CVE-2015-2808, CVE-2015-4000, CVE-2015-2625, CVE-2015-2613) As a security improvement, this update modifies OpenJDK behavior to disable RC4 TLS/SSL cipher suites by default. As a security improvement, this update modifies OpenJDK behavior to reject DH key sizes below 768 bits by default, preventing a possible downgrade attack. Several vulnerabilities were discovered in the OpenJDK JRE related to information disclosure. An attacker could exploit these to expose sensitive data over the network. (CVE-2015-2621, CVE-2015-2632) A vulnerability was discovered with how the JNDI component of the OpenJDK JRE handles DNS resolutions. A remote attacker could exploit this to cause a denial of service. (CVE-2015-4749). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues. last seen 2020-06-01 modified 2020-06-02 plugin id 85154 published 2015-07-31 reporter Ubuntu Security Notice (C) 2015-2019 Canonical, Inc. / NASL script (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/85154 title Ubuntu 14.04 LTS / 15.04 : openjdk-7 vulnerabilities (USN-2696-1) (Bar Mitzvah) (Logjam) NASL family Oracle Linux Local Security Checks NASL id ORACLELINUX_ELSA-2015-1230.NASL description From Red Hat Security Advisory 2015:1230 : Updated java-1.7.0-openjdk packages that fix multiple security issues are now available for Red Hat Enterprise Linux 5. Red Hat Product Security has rated this update as having Important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The java-1.7.0-openjdk packages provide the OpenJDK 7 Java Runtime Environment and the OpenJDK 7 Java Software Development Kit. Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass certain Java sandbox restrictions. (CVE-2015-4760, CVE-2015-2628, CVE-2015-4731, CVE-2015-2590, CVE-2015-4732, CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) Note: With this update, OpenJDK now disables RC4 SSL/TLS cipher suites by default to address the CVE-2015-2808 issue. Refer to Red Hat Bugzilla bug 1207101, linked to in the References section, for additional details about this change. A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them do decrypt all traffic. (CVE-2015-4000) Note: This update forces the TLS/SSL client implementation in OpenJDK to reject DH key sizes below 768 bits, which prevents sessions to be downgraded to export-grade keys. Refer to Red Hat Bugzilla bug 1223211, linked to in the References section, for additional details about this change. It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621, CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) All users of java-1.7.0-openjdk are advised to upgrade to these updated packages, which resolve these issues. All running instances of OpenJDK Java must be restarted for the update to take effect. last seen 2020-06-01 modified 2020-06-02 plugin id 84817 published 2015-07-17 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/84817 title Oracle Linux 5 : java-1.7.0-openjdk (ELSA-2015-1230) (Bar Mitzvah) (Logjam) NASL family CentOS Local Security Checks NASL id CENTOS_RHSA-2015-1229.NASL description Updated java-1.7.0-openjdk packages that fix multiple security issues are now available for Red Hat Enterprise Linux 6 and 7. Red Hat Product Security has rated this update as having Critical security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The java-1.7.0-openjdk packages provide the OpenJDK 7 Java Runtime Environment and the OpenJDK 7 Java Software Development Kit. Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass Java sandbox restrictions. (CVE-2015-4760, CVE-2015-2628, CVE-2015-4731, CVE-2015-2590, CVE-2015-4732, CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) Note: With this update, OpenJDK now disables RC4 TLS/SSL cipher suites by default to address the CVE-2015-2808 issue. Refer to Red Hat Bugzilla bug 1207101, linked to in the References section, for additional details about this change. A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them do decrypt all traffic. (CVE-2015-4000) Note: This update forces the TLS/SSL client implementation in OpenJDK to reject DH key sizes below 768 bits, which prevents sessions to be downgraded to export-grade keys. Refer to Red Hat Bugzilla bug 1223211, linked to in the References section, for additional details about this change. It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621, CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) Note: If the web browser plug-in provided by the icedtea-web package was installed, the issues exposed via Java applets could have been exploited without user interaction if a user visited a malicious website. All users of java-1.7.0-openjdk are advised to upgrade to these updated packages, which resolve these issues. All running instances of OpenJDK Java must be restarted for the update to take effect. last seen 2020-06-01 modified 2020-06-02 plugin id 84771 published 2015-07-16 reporter This script is Copyright (C) 2015-2020 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/84771 title CentOS 6 / 7 : java-1.7.0-openjdk (CESA-2015:1229) (Bar Mitzvah) (Logjam) NASL family Amazon Linux Local Security Checks NASL id ALA_ALAS-2015-570.NASL description Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass Java sandbox restrictions. (CVE-2015-4760 , CVE-2015-2628 , CVE-2015-4731 , CVE-2015-2590 , CVE-2015-4732 , CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) Please note that with this update, OpenJDK now disables RC4 TLS/SSL cipher suites by default to address the CVE-2015-2808 issue. A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them do decrypt all traffic. (CVE-2015-4000) Please note that this update forces the TLS/SSL client implementation in OpenJDK to reject DH key sizes below 768 bits, which prevents sessions to be downgraded to export-grade keys. It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621 , CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) last seen 2020-06-01 modified 2020-06-02 plugin id 84930 published 2015-07-23 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/84930 title Amazon Linux AMI : java-1.7.0-openjdk (ALAS-2015-570) (Bar Mitzvah) (Logjam) NASL family SuSE Local Security Checks NASL id SUSE_SU-2015-1331-1.NASL description IBM Java was updated to 7.1-3.10 to fix several security issues. The following vulnerabilities were fixed : - CVE-2015-1931: IBM Java Security Components store plain text data in memory dumps, which could allow a local attacker to obtain information to aid in further attacks against the system. - CVE-2015-2590: Easily exploitable vulnerability in the Libraries component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2601: Easily exploitable vulnerability in the JCE component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2613: Easily exploitable vulnerability in the JCE component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java SE, Java SE Embedded accessible data. - CVE-2015-2619: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2621: Easily exploitable vulnerability in the JMX component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2625: Very difficult to exploit vulnerability in the JSSE component allowed successful unauthenticated network attacks via SSL/TLS. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2632: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2637: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2638: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2664: Difficult to exploit vulnerability in the Deployment component requiring logon to Operating System. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2808: Very difficult to exploit vulnerability in the JSSE component allowed successful unauthenticated network attacks via SSL/TLS. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java accessible data as well as read access to a subset of Java accessible data. - CVE-2015-4000: Very difficult to exploit vulnerability in the JSSE component allowed successful unauthenticated network attacks via SSL/TLS. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java accessible data as well as read access to a subset of Java Embedded accessible data. - CVE-2015-4729: Very difficult to exploit vulnerability in the Deployment component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java SE accessible data as well as read access to a subset of Java SE accessible data. - CVE-2015-4731: Easily exploitable vulnerability in the JMX component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4732: Easily exploitable vulnerability in the Libraries component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4733: Easily exploitable vulnerability in the RMI component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4748: Very difficult to exploit vulnerability in the Security component allowed successful unauthenticated network attacks via OCSP. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4749: Difficult to exploit vulnerability in the JNDI component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized ability to cause a partial denial of service (partial DOS). - CVE-2015-4760: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. Note that Tenable Network Security has extracted the preceding description block directly from the SUSE security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues. last seen 2020-06-01 modified 2020-06-02 plugin id 85214 published 2015-08-04 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/85214 title SUSE SLES12 Security Update : java-1_7_1-ibm (SUSE-SU-2015:1331-1) (Bar Mitzvah) (Logjam) NASL family SuSE Local Security Checks NASL id SUSE_SU-2015-1509-1.NASL description IBM Java was updated to version 6 SR16 FP7 (6.0-16.7) to fix several security issues and bugs. The following vulnerabilities were fixed : - CVE-2015-1931: IBM Java Security Components store plain text data in memory dumps, which could allow a local attacker to obtain information to aid in further attacks against the system. - CVE-2015-2590: Easily exploitable vulnerability in the Libraries component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2601: Easily exploitable vulnerability in the JCE component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2621: Easily exploitable vulnerability in the JMX component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2625: Very difficult to exploit vulnerability in the JSSE component allowed successful unauthenticated network attacks via SSL/TLS. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2632: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2637: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2638: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2664: Difficult to exploit vulnerability in the Deployment component requiring logon to Operating System. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2808: Very difficult to exploit vulnerability in the JSSE component allowed successful unauthenticated network attacks via SSL/TLS. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java accessible data as well as read access to a subset of Java accessible data. - CVE-2015-4000: Very difficult to exploit vulnerability in the JSSE component allowed successful unauthenticated network attacks via SSL/TLS. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java accessible data as well as read access to a subset of Java Embedded accessible data. (bnc#935540) - CVE-2015-4731: Easily exploitable vulnerability in the JMX component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4732: Easily exploitable vulnerability in the Libraries component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4733: Easily exploitable vulnerability in the RMI component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4748: Very difficult to exploit vulnerability in the Security component allowed successful unauthenticated network attacks via OCSP. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4749: Difficult to exploit vulnerability in the JNDI component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized ability to cause a partial denial of service (partial DOS). - CVE-2015-4760: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. The update package also includes non-security fixes. See advisory for details. Note that Tenable Network Security has extracted the preceding description block directly from the SUSE security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues. last seen 2020-06-01 modified 2020-06-02 plugin id 85869 published 2015-09-09 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/85869 title SUSE SLES11 Security Update : java-1_6_0-ibm (SUSE-SU-2015:1509-1) (Bar Mitzvah) (Logjam) NASL family CentOS Local Security Checks NASL id CENTOS_RHSA-2015-1526.NASL description Updated java-1.6.0-openjdk packages that fix multiple security issues are now available for Red Hat Enterprise Linux 5, 6, and 7. Red Hat Product Security has rated this update as having Important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The java-1.6.0-openjdk packages provide the OpenJDK 6 Java Runtime Environment and the OpenJDK 6 Java Software Development Kit. Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass Java sandbox restrictions. (CVE-2015-4760, CVE-2015-2628, CVE-2015-4731, CVE-2015-2590, CVE-2015-4732, CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) Note: With this update, OpenJDK now disables RC4 TLS/SSL cipher suites by default to address the CVE-2015-2808 issue. Refer to Red Hat Bugzilla bug 1207101, linked to in the References section, for additional details about this change. A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them to decrypt all traffic. (CVE-2015-4000) Note: This update forces the TLS/SSL client implementation in OpenJDK to reject DH key sizes below 768 bits, which prevents sessions to be downgraded to export-grade keys. Refer to Red Hat Bugzilla bug 1223211, linked to in the References section, for additional details about this change. It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621, CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) All users of java-1.6.0-openjdk are advised to upgrade to these updated packages, which resolve these issues. All running instances of OpenJDK Java must be restarted for the update to take effect. last seen 2020-06-01 modified 2020-06-02 plugin id 85127 published 2015-07-31 reporter This script is Copyright (C) 2015-2020 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/85127 title CentOS 5 / 6 / 7 : java-1.6.0-openjdk (CESA-2015:1526) (Bar Mitzvah) (Logjam) NASL family Oracle Linux Local Security Checks NASL id ORACLELINUX_ELSA-2015-1229.NASL description From Red Hat Security Advisory 2015:1229 : Updated java-1.7.0-openjdk packages that fix multiple security issues are now available for Red Hat Enterprise Linux 6 and 7. Red Hat Product Security has rated this update as having Critical security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The java-1.7.0-openjdk packages provide the OpenJDK 7 Java Runtime Environment and the OpenJDK 7 Java Software Development Kit. Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass Java sandbox restrictions. (CVE-2015-4760, CVE-2015-2628, CVE-2015-4731, CVE-2015-2590, CVE-2015-4732, CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) Note: With this update, OpenJDK now disables RC4 TLS/SSL cipher suites by default to address the CVE-2015-2808 issue. Refer to Red Hat Bugzilla bug 1207101, linked to in the References section, for additional details about this change. A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them do decrypt all traffic. (CVE-2015-4000) Note: This update forces the TLS/SSL client implementation in OpenJDK to reject DH key sizes below 768 bits, which prevents sessions to be downgraded to export-grade keys. Refer to Red Hat Bugzilla bug 1223211, linked to in the References section, for additional details about this change. It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621, CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) Note: If the web browser plug-in provided by the icedtea-web package was installed, the issues exposed via Java applets could have been exploited without user interaction if a user visited a malicious website. All users of java-1.7.0-openjdk are advised to upgrade to these updated packages, which resolve these issues. All running instances of OpenJDK Java must be restarted for the update to take effect. last seen 2020-06-01 modified 2020-06-02 plugin id 84785 published 2015-07-16 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/84785 title Oracle Linux 6 / 7 : java-1.7.0-openjdk (ELSA-2015-1229) (Bar Mitzvah) (Logjam) NASL family SuSE Local Security Checks NASL id SUSE_SU-2015-1319-1.NASL description OpenJDK was updated to 2.6.1 - OpenJDK 7u85 to fix security issues and bugs. The following vulnerabilities were fixed : - CVE-2015-2590: Easily exploitable vulnerability in the Libraries component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2596: Difficult to exploit vulnerability in the Hotspot component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java accessible data. - CVE-2015-2597: Easily exploitable vulnerability in the Install component requiring logon to Operating System. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2601: Easily exploitable vulnerability in the JCE component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2613: Easily exploitable vulnerability in the JCE component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java SE, Java SE Embedded accessible data. - CVE-2015-2619: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2621: Easily exploitable vulnerability in the JMX component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2625: Very difficult to exploit vulnerability in the JSSE component allowed successful unauthenticated network attacks via SSL/TLS. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2627: Very difficult to exploit vulnerability in the Install component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2628: Easily exploitable vulnerability in the CORBA component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2632: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2637: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2638: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2664: Difficult to exploit vulnerability in the Deployment component requiring logon to Operating System. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2808: Very difficult to exploit vulnerability in the JSSE component allowed successful unauthenticated network attacks via SSL/TLS. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java accessible data as well as read access to a subset of Java accessible data. - CVE-2015-4000: Very difficult to exploit vulnerability in the JSSE component allowed successful unauthenticated network attacks via SSL/TLS. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java accessible data as well as read access to a subset of Java Embedded accessible data. - CVE-2015-4729: Very difficult to exploit vulnerability in the Deployment component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java SE accessible data as well as read access to a subset of Java SE accessible data. - CVE-2015-4731: Easily exploitable vulnerability in the JMX component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4732: Easily exploitable vulnerability in the Libraries component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4733: Easily exploitable vulnerability in the RMI component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4736: Difficult to exploit vulnerability in the Deployment component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4748: Very difficult to exploit vulnerability in the Security component allowed successful unauthenticated network attacks via OCSP. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4749: Difficult to exploit vulnerability in the JNDI component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized ability to cause a partial denial of service (partial DOS). - CVE-2015-4760: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. Note that Tenable Network Security has extracted the preceding description block directly from the SUSE security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues. last seen 2020-06-01 modified 2020-06-02 plugin id 85152 published 2015-07-31 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/85152 title SUSE SLED12 / SLES12 Security Update : java-1_7_0-openjdk (SUSE-SU-2015:1319-1) (Bar Mitzvah) (Logjam) NASL family Red Hat Local Security Checks NASL id REDHAT-RHSA-2015-1486.NASL description Updated java-1.6.0-ibm packages that fix several security issues are now available for Red Hat Enterprise Linux 5 and 6 Supplementary. Red Hat Product Security has rated this update as having Critical security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. IBM Java SE version 6 includes the IBM Java Runtime Environment and the IBM Java Software Development Kit. This update fixes several vulnerabilities in the IBM Java Runtime Environment and the IBM Java Software Development Kit. Further information about these flaws can be found on the IBM Java Security alerts page, listed in the References section. (CVE-2015-1931, CVE-2015-2590, CVE-2015-2601, CVE-2015-2621, CVE-2015-2625, CVE-2015-2632, CVE-2015-2637, CVE-2015-2638, CVE-2015-2664, CVE-2015-4000, CVE-2015-4731, CVE-2015-4732, CVE-2015-4733, CVE-2015-4748, CVE-2015-4749, CVE-2015-4760) Note: This update forces the TLS/SSL client implementation in IBM JDK to reject DH key sizes below 768 bits to address the CVE-2015-4000 issue. Refer to Red Hat Bugzilla bug 1223211, linked to in the References section, for additional details about this change. All users of java-1.6.0-ibm are advised to upgrade to these updated packages, containing the IBM Java SE 6 SR16-FP7 release. All running instances of IBM Java must be restarted for the update to take effect. last seen 2020-06-01 modified 2020-06-02 plugin id 84956 published 2015-07-23 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/84956 title RHEL 5 / 6 : java-1.6.0-ibm (RHSA-2015:1486) (Logjam) NASL family Red Hat Local Security Checks NASL id REDHAT-RHSA-2015-1544.NASL description Updated java-1.5.0-ibm packages that fix several security issues are now available for Red Hat Enterprise Linux 5 and 6 Supplementary. Red Hat Product Security has rated this update as having Important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. IBM J2SE version 5.0 includes the IBM Java Runtime Environment and the IBM Java Software Development Kit. This update fixes several vulnerabilities in the IBM Java Runtime Environment and the IBM Java Software Development Kit. Further information about these flaws can be found on the IBM Java Security alerts page, listed in the References section. (CVE-2015-1931, CVE-2015-2590, CVE-2015-2601, CVE-2015-2621, CVE-2015-2632, CVE-2015-2637, CVE-2015-2638, CVE-2015-2664, CVE-2015-4000, CVE-2015-4731, CVE-2015-4732, CVE-2015-4733, CVE-2015-4748, CVE-2015-4749, CVE-2015-4760) Note: This update forces the TLS/SSL client implementation in IBM JDK to reject DH key sizes below 768 bits to address the CVE-2015-4000 issue. Refer to Red Hat Bugzilla bug 1223211, linked to in the References section, for additional details about this change. IBM Java SDK and JRE 5.0 will not receive software updates after September 2015. This date is referred to as the End of Service (EOS) date. Customers are advised to migrate to current versions of IBM Java at this time. IBM Java SDK and JRE versions 6 and 7 are available via the Red Hat Enterprise Linux 5 and 6 Supplementary content sets and will continue to receive updates based on IBM last seen 2020-06-01 modified 2020-06-02 plugin id 85238 published 2015-08-05 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/85238 title RHEL 5 / 6 : java-1.5.0-ibm (RHSA-2015:1544) (Logjam) NASL family CentOS Local Security Checks NASL id CENTOS_RHSA-2015-1230.NASL description Updated java-1.7.0-openjdk packages that fix multiple security issues are now available for Red Hat Enterprise Linux 5. Red Hat Product Security has rated this update as having Important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The java-1.7.0-openjdk packages provide the OpenJDK 7 Java Runtime Environment and the OpenJDK 7 Java Software Development Kit. Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass certain Java sandbox restrictions. (CVE-2015-4760, CVE-2015-2628, CVE-2015-4731, CVE-2015-2590, CVE-2015-4732, CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) Note: With this update, OpenJDK now disables RC4 SSL/TLS cipher suites by default to address the CVE-2015-2808 issue. Refer to Red Hat Bugzilla bug 1207101, linked to in the References section, for additional details about this change. A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them do decrypt all traffic. (CVE-2015-4000) Note: This update forces the TLS/SSL client implementation in OpenJDK to reject DH key sizes below 768 bits, which prevents sessions to be downgraded to export-grade keys. Refer to Red Hat Bugzilla bug 1223211, linked to in the References section, for additional details about this change. It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621, CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) All users of java-1.7.0-openjdk are advised to upgrade to these updated packages, which resolve these issues. All running instances of OpenJDK Java must be restarted for the update to take effect. last seen 2020-06-01 modified 2020-06-02 plugin id 84772 published 2015-07-16 reporter This script is Copyright (C) 2015-2020 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/84772 title CentOS 5 : java-1.7.0-openjdk (CESA-2015:1230) (Bar Mitzvah) (Logjam) NASL family Red Hat Local Security Checks NASL id REDHAT-RHSA-2015-1229.NASL description Updated java-1.7.0-openjdk packages that fix multiple security issues are now available for Red Hat Enterprise Linux 6 and 7. Red Hat Product Security has rated this update as having Critical security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The java-1.7.0-openjdk packages provide the OpenJDK 7 Java Runtime Environment and the OpenJDK 7 Java Software Development Kit. Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass Java sandbox restrictions. (CVE-2015-4760, CVE-2015-2628, CVE-2015-4731, CVE-2015-2590, CVE-2015-4732, CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) Note: With this update, OpenJDK now disables RC4 TLS/SSL cipher suites by default to address the CVE-2015-2808 issue. Refer to Red Hat Bugzilla bug 1207101, linked to in the References section, for additional details about this change. A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them do decrypt all traffic. (CVE-2015-4000) Note: This update forces the TLS/SSL client implementation in OpenJDK to reject DH key sizes below 768 bits, which prevents sessions to be downgraded to export-grade keys. Refer to Red Hat Bugzilla bug 1223211, linked to in the References section, for additional details about this change. It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621, CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) Note: If the web browser plug-in provided by the icedtea-web package was installed, the issues exposed via Java applets could have been exploited without user interaction if a user visited a malicious website. All users of java-1.7.0-openjdk are advised to upgrade to these updated packages, which resolve these issues. All running instances of OpenJDK Java must be restarted for the update to take effect. last seen 2020-06-01 modified 2020-06-02 plugin id 84788 published 2015-07-16 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/84788 title RHEL 6 / 7 : java-1.7.0-openjdk (RHSA-2015:1229) (Bar Mitzvah) (Logjam) NASL family Red Hat Local Security Checks NASL id REDHAT-RHSA-2015-1243.NASL description Updated java-1.6.0-sun packages that fix several security issues are now available for Oracle Java for Red Hat Enterprise Linux 5, 6, and 7. Red Hat Product Security has rated this update as having Important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. Oracle Java SE version 6 includes the Oracle Java Runtime Environment and the Oracle Java Software Development Kit. This update fixes several vulnerabilities in the Oracle Java Runtime Environment and the Oracle Java Software Development Kit. Further information about these flaws can be found on the Oracle Java SE Critical Patch Update Advisory page, listed in the References section. (CVE-2015-2590, CVE-2015-2601, CVE-2015-2621, CVE-2015-2625, CVE-2015-2627, CVE-2015-2628, CVE-2015-2632, CVE-2015-2637, CVE-2015-2638, CVE-2015-2664, CVE-2015-2808, CVE-2015-4000, CVE-2015-4731, CVE-2015-4732, CVE-2015-4733, CVE-2015-4748, CVE-2015-4749, CVE-2015-4760) Note: With this update, Oracle JDK now disables RC4 TLS/SSL cipher suites by default to address the CVE-2015-2808 issue. Refer to Red Hat Bugzilla bug 1207101, linked to in the References section, for additional details about this change. Note: This update forces the TLS/SSL client implementation in Oracle JDK to reject DH key sizes below 768 bits to address the CVE-2015-4000 issue. Refer to Red Hat Bugzilla bug 1223211, linked to in the References section, for additional details about this change. All users of java-1.6.0-sun are advised to upgrade to these updated packages, which provide Oracle Java 6 Update 101 and resolve these issues. All running instances of Oracle Java must be restarted for the update to take effect. last seen 2020-06-01 modified 2020-06-02 plugin id 84873 published 2015-07-20 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/84873 title RHEL 5 / 6 / 7 : java-1.6.0-sun (RHSA-2015:1243) (Bar Mitzvah) (Logjam) NASL family Oracle Linux Local Security Checks NASL id ORACLELINUX_ELSA-2015-1228.NASL description From Red Hat Security Advisory 2015:1228 : Updated java-1.8.0-openjdk packages that fix multiple security issues are now available for Red Hat Enterprise Linux 6 and 7. Red Hat Product Security has rated this update as having Important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The java-1.8.0-openjdk packages provide the OpenJDK 8 Java Runtime Environment and the OpenJDK 8 Java Software Development Kit. Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass Java sandbox restrictions. (CVE-2015-4760, CVE-2015-2628, CVE-2015-4731, CVE-2015-2590, CVE-2015-4732, CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) It was discovered that the GCM (Galois Counter Mode) implementation in the Security component of OpenJDK failed to properly perform a null check. This could cause the Java Virtual Machine to crash when an application performed encryption using a block cipher in the GCM mode. (CVE-2015-2659) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) Note: With this update, OpenJDK now disables RC4 TLS/SSL cipher suites by default to address the CVE-2015-2808 issue. Refer to Red Hat Bugzilla bug 1207101, linked to in the References section, for additional details about this change. A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them do decrypt all traffic. (CVE-2015-4000) Note: This update forces the TLS/SSL client implementation in OpenJDK to reject DH key sizes below 768 bits, which prevents sessions to be downgraded to export-grade keys. Refer to Red Hat Bugzilla bug 1223211, linked to in the References section, for additional details about this change. It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621, CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) Multiple insecure temporary file use issues were found in the way the Hotspot component in OpenJDK created performance statistics and error log files. A local attacker could possibly make a victim using OpenJDK overwrite arbitrary files using a symlink attack. Note: This issue was originally fixed as CVE-2015-0383, but the fix was regressed in the RHSA-2015:0809 advisory. (CVE-2015-3149) All users of java-1.8.0-openjdk are advised to upgrade to these updated packages, which resolve these issues. All running instances of OpenJDK Java must be restarted for the update to take effect. last seen 2020-06-01 modified 2020-06-02 plugin id 84784 published 2015-07-16 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/84784 title Oracle Linux 6 / 7 : java-1.8.0-openjdk (ELSA-2015-1228) (Bar Mitzvah) (Logjam) NASL family Debian Local Security Checks NASL id DEBIAN_DLA-303.NASL description Several vulnerabilities have been discovered in OpenJDK, an implementation of the Oracle Java platform, resulting in the execution of arbitrary code, breakouts of the Java sandbox, information disclosure, denial of service or insecure cryptography. For Debian 6 last seen 2020-03-17 modified 2015-08-31 plugin id 85695 published 2015-08-31 reporter This script is Copyright (C) 2015-2020 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/85695 title Debian DLA-303-1 : openjdk-6 security update (Bar Mitzvah) (Logjam) NASL family Red Hat Local Security Checks NASL id REDHAT-RHSA-2015-1488.NASL description Updated java-1.7.0-ibm packages that fix several security issues are now available for Red Hat Enterprise Linux 5 Supplementary. Red Hat Product Security has rated this update as having Critical security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. IBM Java SE version 7 includes the IBM Java Runtime Environment and the IBM Java Software Development Kit. This update fixes several vulnerabilities in the IBM Java Runtime Environment and the IBM Java Software Development Kit. Further information about these flaws can be found on the IBM Java Security alerts page, listed in the References section. (CVE-2015-1931, CVE-2015-2590, CVE-2015-2601, CVE-2015-2613, CVE-2015-2619, CVE-2015-2621, CVE-2015-2625, CVE-2015-2632, CVE-2015-2637, CVE-2015-2638, CVE-2015-2664, CVE-2015-4000, CVE-2015-4729, CVE-2015-4731, CVE-2015-4732, CVE-2015-4733, CVE-2015-4736, CVE-2015-4748, CVE-2015-4749, CVE-2015-4760) Note: This update forces the TLS/SSL client implementation in IBM JDK to reject DH key sizes below 768 bits to address the CVE-2015-4000 issue. Refer to Red Hat Bugzilla bug 1223211, linked to in the References section, for additional details about this change. All users of java-1.7.0-ibm are advised to upgrade to these updated packages, containing the IBM Java SE 7 SR9-FP10 release. All running instances of IBM Java must be restarted for the update to take effect. last seen 2020-06-01 modified 2020-06-02 plugin id 84978 published 2015-07-24 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/84978 title RHEL 5 : java-1.7.0-ibm (RHSA-2015:1488) (Logjam) NASL family Gentoo Local Security Checks NASL id GENTOO_GLSA-201603-11.NASL description The remote host is affected by the vulnerability described in GLSA-201603-11 (Oracle JRE/JDK: Multiple vulnerabilities) Multiple vulnerabilities exist in both Oracle’s JRE and JDK. Please review the referenced CVE’s for additional information. Impact : Remote attackers could gain access to information, remotely execute arbitrary code, and cause Denial of Service. Workaround : There is no known workaround at this time. last seen 2020-06-01 modified 2020-06-02 plugin id 89904 published 2016-03-14 reporter This script is Copyright (C) 2016-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/89904 title GLSA-201603-11 : Oracle JRE/JDK: Multiple vulnerabilities (Logjam) NASL family Amazon Linux Local Security Checks NASL id ALA_ALAS-2015-586.NASL description Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass Java sandbox restrictions. (CVE-2015-4760 , CVE-2015-2628 , CVE-2015-4731 , CVE-2015-2590 , CVE-2015-4732 , CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them to decrypt all traffic. (CVE-2015-4000) It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621 , CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) last seen 2020-06-01 modified 2020-06-02 plugin id 85631 published 2015-08-26 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/85631 title Amazon Linux AMI : java-1.6.0-openjdk (ALAS-2015-586) (Bar Mitzvah) (Logjam) NASL family SuSE Local Security Checks NASL id SUSE_SU-2015-1320-1.NASL description OpenJDK was updated to 2.6.1 - OpenJDK 7u85 to fix security issues and bugs. The following vulnerabilities were fixed : - CVE-2015-2590: Easily exploitable vulnerability in the Libraries component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2596: Difficult to exploit vulnerability in the Hotspot component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java accessible data. - CVE-2015-2597: Easily exploitable vulnerability in the Install component requiring logon to Operating System. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2601: Easily exploitable vulnerability in the JCE component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2613: Easily exploitable vulnerability in the JCE component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java SE, Java SE Embedded accessible data. - CVE-2015-2619: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2621: Easily exploitable vulnerability in the JMX component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2625: Very difficult to exploit vulnerability in the JSSE component allowed successful unauthenticated network attacks via SSL/TLS. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2627: Very difficult to exploit vulnerability in the Install component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2628: Easily exploitable vulnerability in the CORBA component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2632: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2637: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2638: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2664: Difficult to exploit vulnerability in the Deployment component requiring logon to Operating System. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2808: Very difficult to exploit vulnerability in the JSSE component allowed successful unauthenticated network attacks via SSL/TLS. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java accessible data as well as read access to a subset of Java accessible data. - CVE-2015-4000: Very difficult to exploit vulnerability in the JSSE component allowed successful unauthenticated network attacks via SSL/TLS. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java accessible data as well as read access to a subset of Java Embedded accessible data. - CVE-2015-4729: Very difficult to exploit vulnerability in the Deployment component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java SE accessible data as well as read access to a subset of Java SE accessible data. - CVE-2015-4731: Easily exploitable vulnerability in the JMX component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4732: Easily exploitable vulnerability in the Libraries component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4733: Easily exploitable vulnerability in the RMI component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4736: Difficult to exploit vulnerability in the Deployment component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4748: Very difficult to exploit vulnerability in the Security component allowed successful unauthenticated network attacks via OCSP. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4749: Difficult to exploit vulnerability in the JNDI component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized ability to cause a partial denial of service (partial DOS). - CVE-2015-4760: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. Note that Tenable Network Security has extracted the preceding description block directly from the SUSE security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues. last seen 2020-06-01 modified 2020-06-02 plugin id 85153 published 2015-07-31 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/85153 title SUSE SLED11 Security Update : java-1_7_0-openjdk (SUSE-SU-2015:1320-1) (Bar Mitzvah) (Logjam) NASL family AIX Local Security Checks NASL id AIX_JAVA_JULY2015_ADVISORY.NASL description The version of Java SDK installed on the remote AIX host is affected by multiple vulnerabilities : - Java Security Components store plaintext data in memory dumps, which allows a local attacker to gain access to sensitive information. (CVE-2015-1931) - A flaw exists in the readSerialData() function in class ObjectInputStream.java when handling OIS data, which allows an attacker to execute arbitrary code. (CVE-2015-2590) - Multiple flaws exist in the JCE component due to various cryptographic operations using non-constant time comparisons. A remote attacker can exploit this to conduct timing attacks to gain access to sensitive information. (CVE-2015-2601) - A flaw exists in the ECDH_Derive() function in file ec.c due to missing EC parameter validation when performing ECDH key derivation. A remote attacker can exploit this to access sensitive information. (CVE-2015-2613) - An unspecified vulnerability exists in the 2D component that allows a remote attacker to access sensitive information. (CVE-2015-2619, CVE-2015-2637) - A flaw exists in the RMIConnectionImpl constructor in class RMIConnectionImpl.java due to improper permission checks when creating repository class loaders. An attacker can exploit this to bypass sandbox restrictions and access sensitive information. (CVE-2015-2621) - An unspecified flaw exists in the JSSE component when handling the SSL/TLS protocol. A remote attacker can exploit this to gain access to sensitive information. (CVE-2015-2625) - An integer overflow condition exists in the International Components for Unicode for C/C++ (ICU4C). An attacker, using a specially crafted font, can exploit this to crash an application using this library or access memory contents. (CVE-2015-2632) - A unspecified vulnerability exists in the 2D component that allows a remote attacker to execute arbitrary code. (CVE-2015-2638) - An unspecified flaw exists in the Deployment component that allows a local attacker to gain elevated privileges. (CVE-2015-2664) - A man-in-the-middle vulnerability, known as Logjam, exists due to a flaw in the SSL/TLS protocol. A remote attacker can exploit this flaw to downgrade connections using ephemeral Diffie-Hellman key exchange to 512-bit export-grade cryptography. (CVE-2015-4000) - An unspecified vulnerability exists in the Deployment component that impacts confidentiality and integrity. (CVE-2015-4729) - A flaw exists in class MBeanServerInvocationHandler.java when handling MBean connection proxy classes. An attacker can exploit this to bypass sandbox restrictions and execute arbitrary code. (CVE-2015-4731) - Multiple flaws exist in classes ObjectInputStream.java and SerialCallbackContext.java related to insufficient context checking. An attacker can exploit these to execute arbitrary code. (CVE-2015-4732) - A flaw exists in the invoke() method in the class RemoteObjectInvocationHandler.java due to calls to the finalize() method being permitted. An attacker can exploit this to bypass sandbox protections and execute arbitrary code. (CVE-2015-4733) - An unspecified flaw exists in the Deployment component that allows a local attacker to execute arbitrary code. (CVE-2015-4736) - A flaw exists in the Security component when handling Online Certificate Status Protocol (OCSP) responses with no last seen 2020-06-01 modified 2020-06-02 plugin id 85447 published 2015-08-17 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/85447 title AIX Java Advisory : java_july2015_advisory.asc (Logjam) NASL family Red Hat Local Security Checks NASL id REDHAT-RHSA-2015-1230.NASL description Updated java-1.7.0-openjdk packages that fix multiple security issues are now available for Red Hat Enterprise Linux 5. Red Hat Product Security has rated this update as having Important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The java-1.7.0-openjdk packages provide the OpenJDK 7 Java Runtime Environment and the OpenJDK 7 Java Software Development Kit. Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass certain Java sandbox restrictions. (CVE-2015-4760, CVE-2015-2628, CVE-2015-4731, CVE-2015-2590, CVE-2015-4732, CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) Note: With this update, OpenJDK now disables RC4 SSL/TLS cipher suites by default to address the CVE-2015-2808 issue. Refer to Red Hat Bugzilla bug 1207101, linked to in the References section, for additional details about this change. A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them do decrypt all traffic. (CVE-2015-4000) Note: This update forces the TLS/SSL client implementation in OpenJDK to reject DH key sizes below 768 bits, which prevents sessions to be downgraded to export-grade keys. Refer to Red Hat Bugzilla bug 1223211, linked to in the References section, for additional details about this change. It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621, CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) All users of java-1.7.0-openjdk are advised to upgrade to these updated packages, which resolve these issues. All running instances of OpenJDK Java must be restarted for the update to take effect. last seen 2020-06-01 modified 2020-06-02 plugin id 84789 published 2015-07-16 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/84789 title RHEL 5 : java-1.7.0-openjdk (RHSA-2015:1230) (Bar Mitzvah) (Logjam) NASL family Debian Local Security Checks NASL id DEBIAN_DSA-3339.NASL description Several vulnerabilities have been discovered in OpenJDK, an implementation of the Oracle Java platform, resulting in the execution of arbitrary code, breakouts of the Java sandbox, information disclosure, denial of service or insecure cryptography. last seen 2020-06-01 modified 2020-06-02 plugin id 85588 published 2015-08-24 reporter This script is Copyright (C) 2015-2018 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/85588 title Debian DSA-3339-1 : openjdk-6 - security update (Bar Mitzvah) (Logjam) NASL family Windows NASL id ORACLE_JAVA_CPU_JUL_2015.NASL description The version of Oracle (formerly Sun) Java SE or Java for Business installed on the remote host is prior to 8 Update 51, 7 Update 85, or 6 Update 101. It is, therefore, affected by security vulnerabilities in the following components : - 2D - CORBA - Deployment - Hotspot - Install - JCE - JMX - JNDI - JSSE - Libraries - RMI - Security last seen 2020-06-01 modified 2020-06-02 plugin id 84824 published 2015-07-17 reporter This script is Copyright (C) 2015-2018 Tenable Network Security, Inc. source https://www.tenable.com/plugins/nessus/84824 title Oracle Java SE Multiple Vulnerabilities (July 2015 CPU) (Bar Mitzvah) NASL family Red Hat Local Security Checks NASL id REDHAT-RHSA-2015-1526.NASL description Updated java-1.6.0-openjdk packages that fix multiple security issues are now available for Red Hat Enterprise Linux 5, 6, and 7. Red Hat Product Security has rated this update as having Important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The java-1.6.0-openjdk packages provide the OpenJDK 6 Java Runtime Environment and the OpenJDK 6 Java Software Development Kit. Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass Java sandbox restrictions. (CVE-2015-4760, CVE-2015-2628, CVE-2015-4731, CVE-2015-2590, CVE-2015-4732, CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) Note: With this update, OpenJDK now disables RC4 TLS/SSL cipher suites by default to address the CVE-2015-2808 issue. Refer to Red Hat Bugzilla bug 1207101, linked to in the References section, for additional details about this change. A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them to decrypt all traffic. (CVE-2015-4000) Note: This update forces the TLS/SSL client implementation in OpenJDK to reject DH key sizes below 768 bits, which prevents sessions to be downgraded to export-grade keys. Refer to Red Hat Bugzilla bug 1223211, linked to in the References section, for additional details about this change. It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621, CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) All users of java-1.6.0-openjdk are advised to upgrade to these updated packages, which resolve these issues. All running instances of OpenJDK Java must be restarted for the update to take effect. last seen 2020-06-01 modified 2020-06-02 plugin id 85149 published 2015-07-31 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/85149 title RHEL 5 / 6 / 7 : java-1.6.0-openjdk (RHSA-2015:1526) (Bar Mitzvah) (Logjam) NASL family SuSE Local Security Checks NASL id SUSE_SU-2015-1329-1.NASL description IBM Java was updated to 7.1-3.10 to fix several security issues. The following vulnerabilities were fixed : - CVE-2015-1931: IBM Java Security Components store plain text data in memory dumps, which could allow a local attacker to obtain information to aid in further attacks against the system. - CVE-2015-2590: Easily exploitable vulnerability in the Libraries component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2601: Easily exploitable vulnerability in the JCE component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2613: Easily exploitable vulnerability in the JCE component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java SE, Java SE Embedded accessible data. - CVE-2015-2619: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2621: Easily exploitable vulnerability in the JMX component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2625: Very difficult to exploit vulnerability in the JSSE component allowed successful unauthenticated network attacks via SSL/TLS. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2632: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2637: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized read access to a subset of Java accessible data. - CVE-2015-2638: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2664: Difficult to exploit vulnerability in the Deployment component requiring logon to Operating System. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-2808: Very difficult to exploit vulnerability in the JSSE component allowed successful unauthenticated network attacks via SSL/TLS. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java accessible data as well as read access to a subset of Java accessible data. - CVE-2015-4000: Very difficult to exploit vulnerability in the JSSE component allowed successful unauthenticated network attacks via SSL/TLS. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java accessible data as well as read access to a subset of Java Embedded accessible data. - CVE-2015-4729: Very difficult to exploit vulnerability in the Deployment component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized update, insert or delete access to some Java SE accessible data as well as read access to a subset of Java SE accessible data. - CVE-2015-4731: Easily exploitable vulnerability in the JMX component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4732: Easily exploitable vulnerability in the Libraries component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4733: Easily exploitable vulnerability in the RMI component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4748: Very difficult to exploit vulnerability in the Security component allowed successful unauthenticated network attacks via OCSP. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. - CVE-2015-4749: Difficult to exploit vulnerability in the JNDI component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized ability to cause a partial denial of service (partial DOS). - CVE-2015-4760: Easily exploitable vulnerability in the 2D component allowed successful unauthenticated network attacks via multiple protocols. Successful attack of this vulnerability could have resulted in unauthorized Operating System takeover including arbitrary code execution. Note that Tenable Network Security has extracted the preceding description block directly from the SUSE security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues. last seen 2020-06-01 modified 2020-06-02 plugin id 85213 published 2015-08-04 reporter This script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/85213 title SUSE SLES11 Security Update : java-1_7_1-ibm (SUSE-SU-2015:1329-1) (Bar Mitzvah) (Logjam) NASL family Misc. NASL id ORACLE_JAVA_CPU_JUL_2015_UNIX.NASL description The version of Oracle (formerly Sun) Java SE or Java for Business installed on the remote host is prior to 8 Update 51, 7 Update 85, or 6 Update 101. It is, therefore, affected by security vulnerabilities in the following components : - 2D - CORBA - Deployment - Hotspot - Install - JCE - JMX - JNDI - JSSE - Libraries - RMI - Security last seen 2020-06-01 modified 2020-06-02 plugin id 84825 published 2015-07-17 reporter This script is Copyright (C) 2015-2018 Tenable Network Security, Inc. source https://www.tenable.com/plugins/nessus/84825 title Oracle Java SE Multiple Vulnerabilities (July 2015 CPU) (Unix) (Bar Mitzvah) NASL family Gentoo Local Security Checks NASL id GENTOO_GLSA-201603-14.NASL description The remote host is affected by the vulnerability described in GLSA-201603-14 (IcedTea: Multiple vulnerabilities) Various OpenJDK attack vectors in IcedTea, such as 2D, Corba, Hotspot, Libraries, and JAXP, exist which allows remote attackers to affect the confidentiality, integrity, and availability of vulnerable systems. This includes the possibility of remote execution of arbitrary code, information disclosure, or Denial of Service. Many of the vulnerabilities can only be exploited through sandboxed Java Web Start applications and java applets. Please reference the CVEs listed for specific details. Impact : Remote attackers may remotely execute arbitrary code, compromise information, or cause Denial of Service. Workaround : There is no known work around at this time. last seen 2020-06-01 modified 2020-06-02 plugin id 89907 published 2016-03-14 reporter This script is Copyright (C) 2016-2019 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/89907 title GLSA-201603-14 : IcedTea: Multiple vulnerabilities NASL family Scientific Linux Local Security Checks NASL id SL_20150715_JAVA_1_7_0_OPENJDK_ON_SL6_X.NASL description Multiple flaws were discovered in the 2D, CORBA, JMX, Libraries and RMI components in OpenJDK. An untrusted Java application or applet could use these flaws to bypass Java sandbox restrictions. (CVE-2015-4760, CVE-2015-2628, CVE-2015-4731, CVE-2015-2590, CVE-2015-4732, CVE-2015-4733) A flaw was found in the way the Libraries component of OpenJDK verified Online Certificate Status Protocol (OCSP) responses. An OCSP response with no nextUpdate date specified was incorrectly handled as having unlimited validity, possibly causing a revoked X.509 certificate to be interpreted as valid. (CVE-2015-4748) It was discovered that the JCE component in OpenJDK failed to use constant time comparisons in multiple cases. An attacker could possibly use these flaws to disclose sensitive information by measuring the time used to perform operations using these non-constant time comparisons. (CVE-2015-2601) A flaw was found in the RC4 encryption algorithm. When using certain keys for RC4 encryption, an attacker could obtain portions of the plain text from the cipher text without the knowledge of the encryption key. (CVE-2015-2808) A flaw was found in the way the TLS protocol composed the Diffie-Hellman (DH) key exchange. A man-in-the-middle attacker could use this flaw to force the use of weak 512 bit export-grade keys during the key exchange, allowing them do decrypt all traffic. (CVE-2015-4000) It was discovered that the JNDI component in OpenJDK did not handle DNS resolutions correctly. An attacker able to trigger such DNS errors could cause a Java application using JNDI to consume memory and CPU time, and possibly block further DNS resolution. (CVE-2015-4749) Multiple information leak flaws were found in the JMX and 2D components in OpenJDK. An untrusted Java application or applet could use this flaw to bypass certain Java sandbox restrictions. (CVE-2015-2621, CVE-2015-2632) A flaw was found in the way the JSSE component in OpenJDK performed X.509 certificate identity verification when establishing a TLS/SSL connection to a host identified by an IP address. In certain cases, the certificate was accepted as valid if it was issued for a host name to which the IP address resolves rather than for the IP address. (CVE-2015-2625) Note: If the web browser plug-in provided by the icedtea-web package was installed, the issues exposed via Java applets could have been exploited without user interaction if a user visited a malicious website. All running instances of OpenJDK Java must be restarted for the update to take effect. last seen 2020-03-18 modified 2015-07-16 plugin id 84792 published 2015-07-16 reporter This script is Copyright (C) 2015-2020 and is owned by Tenable, Inc. or an Affiliate thereof. source https://www.tenable.com/plugins/nessus/84792 title Scientific Linux Security Update : java-1.7.0-openjdk on SL6.x, SL7.x i386/x86_64 (20150715) (Bar Mitzvah) (Logjam)
Redhat
advisories |
| ||||||||||||||||||||||||||||||||||||||||||||||||
rpms |
|
References
- http://lists.opensuse.org/opensuse-security-announce/2015-07/msg00039.html
- http://lists.opensuse.org/opensuse-security-announce/2015-07/msg00039.html
- http://lists.opensuse.org/opensuse-security-announce/2015-07/msg00040.html
- http://lists.opensuse.org/opensuse-security-announce/2015-07/msg00040.html
- http://lists.opensuse.org/opensuse-security-announce/2015-07/msg00046.html
- http://lists.opensuse.org/opensuse-security-announce/2015-07/msg00046.html
- http://lists.opensuse.org/opensuse-security-announce/2015-07/msg00047.html
- http://lists.opensuse.org/opensuse-security-announce/2015-07/msg00047.html
- http://rhn.redhat.com/errata/RHSA-2015-1228.html
- http://rhn.redhat.com/errata/RHSA-2015-1228.html
- http://rhn.redhat.com/errata/RHSA-2015-1229.html
- http://rhn.redhat.com/errata/RHSA-2015-1229.html
- http://rhn.redhat.com/errata/RHSA-2015-1230.html
- http://rhn.redhat.com/errata/RHSA-2015-1230.html
- http://rhn.redhat.com/errata/RHSA-2015-1241.html
- http://rhn.redhat.com/errata/RHSA-2015-1241.html
- http://rhn.redhat.com/errata/RHSA-2015-1242.html
- http://rhn.redhat.com/errata/RHSA-2015-1242.html
- http://rhn.redhat.com/errata/RHSA-2015-1243.html
- http://rhn.redhat.com/errata/RHSA-2015-1243.html
- http://rhn.redhat.com/errata/RHSA-2015-1485.html
- http://rhn.redhat.com/errata/RHSA-2015-1485.html
- http://rhn.redhat.com/errata/RHSA-2015-1486.html
- http://rhn.redhat.com/errata/RHSA-2015-1486.html
- http://rhn.redhat.com/errata/RHSA-2015-1488.html
- http://rhn.redhat.com/errata/RHSA-2015-1488.html
- http://rhn.redhat.com/errata/RHSA-2015-1526.html
- http://rhn.redhat.com/errata/RHSA-2015-1526.html
- http://rhn.redhat.com/errata/RHSA-2015-1544.html
- http://rhn.redhat.com/errata/RHSA-2015-1544.html
- http://rhn.redhat.com/errata/RHSA-2015-1604.html
- http://rhn.redhat.com/errata/RHSA-2015-1604.html
- http://www.debian.org/security/2015/dsa-3316
- http://www.debian.org/security/2015/dsa-3316
- http://www.debian.org/security/2015/dsa-3339
- http://www.debian.org/security/2015/dsa-3339
- http://www.oracle.com/technetwork/topics/security/cpujul2015-2367936.html
- http://www.oracle.com/technetwork/topics/security/cpujul2015-2367936.html
- http://www.securityfocus.com/bid/75818
- http://www.securityfocus.com/bid/75818
- http://www.securitytracker.com/id/1032910
- http://www.securitytracker.com/id/1032910
- http://www.ubuntu.com/usn/USN-2696-1
- http://www.ubuntu.com/usn/USN-2696-1
- http://www.ubuntu.com/usn/USN-2706-1
- http://www.ubuntu.com/usn/USN-2706-1
- https://security.gentoo.org/glsa/201603-11
- https://security.gentoo.org/glsa/201603-11
- https://security.gentoo.org/glsa/201603-14
- https://security.gentoo.org/glsa/201603-14