Vulnerabilities > CVE-2011-1020 - Information Exposure vulnerability in Linux Kernel

047910
CVSS 0.0 - NONE
Attack vector
UNKNOWN
Attack complexity
UNKNOWN
Privileges required
UNKNOWN
Confidentiality impact
UNKNOWN
Integrity impact
UNKNOWN
Availability impact
UNKNOWN
linux
CWE-200
nessus
exploit available

Summary

The proc filesystem implementation in the Linux kernel 2.6.37 and earlier does not restrict access to the /proc directory tree of a process after this process performs an exec of a setuid program, which allows local users to obtain sensitive information or cause a denial of service via open, lseek, read, and write system calls.

Vulnerable Configurations

Part Description Count
OS
Linux
1264

Common Weakness Enumeration (CWE)

Common Attack Pattern Enumeration and Classification (CAPEC)

  • Subverting Environment Variable Values
    The attacker directly or indirectly modifies environment variables used by or controlling the target software. The attacker's goal is to cause the target software to deviate from its expected operation in a manner that benefits the attacker.
  • Footprinting
    An attacker engages in probing and exploration activity to identify constituents and properties of the target. Footprinting is a general term to describe a variety of information gathering techniques, often used by attackers in preparation for some attack. It consists of using tools to learn as much as possible about the composition, configuration, and security mechanisms of the targeted application, system or network. Information that might be collected during a footprinting effort could include open ports, applications and their versions, network topology, and similar information. While footprinting is not intended to be damaging (although certain activities, such as network scans, can sometimes cause disruptions to vulnerable applications inadvertently) it may often pave the way for more damaging attacks.
  • Exploiting Trust in Client (aka Make the Client Invisible)
    An attack of this type exploits a programs' vulnerabilities in client/server communication channel authentication and data integrity. It leverages the implicit trust a server places in the client, or more importantly, that which the server believes is the client. An attacker executes this type of attack by placing themselves in the communication channel between client and server such that communication directly to the server is possible where the server believes it is communicating only with a valid client. There are numerous variations of this type of attack.
  • Browser Fingerprinting
    An attacker carefully crafts small snippets of Java Script to efficiently detect the type of browser the potential victim is using. Many web-based attacks need prior knowledge of the web browser including the version of browser to ensure successful exploitation of a vulnerability. Having this knowledge allows an attacker to target the victim with attacks that specifically exploit known or zero day weaknesses in the type and version of the browser used by the victim. Automating this process via Java Script as a part of the same delivery system used to exploit the browser is considered more efficient as the attacker can supply a browser fingerprinting method and integrate it with exploit code, all contained in Java Script and in response to the same web page request by the browser.
  • Session Credential Falsification through Prediction
    This attack targets predictable session ID in order to gain privileges. The attacker can predict the session ID used during a transaction to perform spoofing and session hijacking.

Exploit-Db

idEDB-ID:41770
last seen2018-11-30
modified2011-01-17
published2011-01-17
reporterExploit-DB
sourcehttps://www.exploit-db.com/download/41770
titleLinux Kernel 2.6.32 (Ubuntu 10.04) - '/proc' Handling SUID Privilege Escalation

Nessus

  • NASL familyVMware ESX Local Security Checks
    NASL idVMWARE_VMSA-2012-0013.NASL
    descriptiona. vCenter and ESX update to JRE 1.6.0 Update 31 The Oracle (Sun) JRE is updated to version 1.6.0_31, which addresses multiple security issues. Oracle has documented the CVE identifiers that are addressed by this update in the Oracle Java SE Critical Patch Update Advisory of February 2012. b. vCenter Update Manager update to JRE 1.5.0 Update 36 The Oracle (Sun) JRE is updated to 1.5.0_36 to address multiple security issues. Oracle has documented the CVE identifiers that are addressed in JRE 1.5.0_36 in the Oracle Java SE Critical Patch Update Advisory for June 2012. c. Update to ESX/ESXi userworld OpenSSL library The ESX/ESXi userworld OpenSSL library is updated from version 0.9.8p to version 0.9.8t to resolve multiple security issues. The Common Vulnerabilities and Exposures project (cve.mitre.org) has assigned the names CVE-2010-4180, CVE-2010-4252, CVE-2011-0014, CVE-2011-4108, CVE-2011-4109, CVE-2011-4576, CVE-2011-4577, CVE-2011-4619, and CVE-2012-0050 to these issues. d. Update to ESX service console OpenSSL RPM The service console OpenSSL RPM is updated to version 0.9.8e-22.el5_8.3 to resolve a security issue. The Common Vulnerabilities and Exposures project (cve.mitre.org) has assigned the name CVE-2012-2110 to this issue. e. Update to ESX service console kernel The ESX service console kernel is updated to resolve multiple security issues. The Common Vulnerabilities and Exposures project (cve.mitre.org) has assigned the names CVE-2011-1833, CVE-2011-2484, CVE-2011-2496, CVE-2011-3188, CVE-2011-3209, CVE-2011-3363, CVE-2011-4110, CVE-2011-1020, CVE-2011-4132, CVE-2011-4324, CVE-2011-4325, CVE-2012-0207, CVE-2011-2699, and CVE-2012-1583 to these issues. f. Update to ESX service console Perl RPM The ESX service console Perl RPM is updated to perl-5.8.8.32.1.8999.vmw to resolve multiple security issues. The Common Vulnerabilities and Exposures project (cve.mitre.org) has assigned the names CVE-2010-2761, CVE-2010-4410, and CVE-2011-3597 to these issues. g. Update to ESX service console libxml2 RPMs The ESX service console libmxl2 RPMs are updated to libxml2-2.6.26-2.1.15.el5_8.2 and libxml2-python-2.6.26-2.1.15.el5_8.2 to resolve a security issue. The Common Vulnerabilities and Exposures project (cve.mitre.org) has assigned the name CVE-2012-0841 to this issue. h. Update to ESX service console glibc RPM The ESX service console glibc RPM is updated to version glibc-2.5-81.el5_8.1 to resolve multiple security issues. The Common Vulnerabilities and Exposures project (cve.mitre.org) has assigned the names CVE-2009-5029, CVE-2009-5064, CVE-2010-0830, CVE-2011-1089, CVE-2011-4609, and CVE-2012-0864 to these issue. i. Update to ESX service console GnuTLS RPM The ESX service console GnuTLS RPM is updated to version 1.4.1-7.el5_8.2 to resolve multiple security issues. The Common Vulnerabilities and Exposures project (cve.mitre.org) has assigned the names CVE-2011-4128, CVE-2012-1569, and CVE-2012-1573 to these issues. j. Update to ESX service console popt, rpm, rpm-libs, and rpm-python RPMS The ESX service console popt, rpm, rpm-libs, and rpm-python RPMS are updated to the following versions to resolve multiple security issues : - popt-1.10.2.3-28.el5_8 - rpm-4.4.2.3-28.el5_8 - rpm-libs-4.4.2.3-28.el5_8 - rpm-python-4.4.2.3-28.el5_8 The Common Vulnerabilities and Exposures project (cve.mitre.org) has assigned the name CVE-2012-0060, CVE-2012-0061, and CVE-2012-0815 to these issues. k. Vulnerability in third-party Apache Struts component The version of Apache Struts in vCenter Operations has been updated to 2.3.4 which addresses an arbitrary file overwrite vulnerability. This vulnerability allows an attacker to create a denial of service by overwriting arbitrary files without authentication. The attacker would need to be on the same network as the system where vCOps is installed. The Common Vulnerabilities and Exposures project (cve.mitre.org) has assigned the name CVE-2012-0393 to this issue. Note: Apache struts 2.3.4 addresses the following issues as well : CVE-2011-5057, CVE-2012-0391, CVE-2012-0392, CVE-2012-0394. It was found that these do not affect vCOps. VMware would like to thank Alexander Minozhenko from ERPScan for reporting this issue to us.
    last seen2020-06-01
    modified2020-06-02
    plugin id61747
    published2012-08-31
    reporterThis script is Copyright (C) 2012-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/61747
    titleVMSA-2012-0013 : VMware vSphere and vCOps updates to third-party libraries
    code
    #
    # (C) Tenable Network Security, Inc.
    #
    # The descriptive text and package checks in this plugin were  
    # extracted from VMware Security Advisory 2012-0013. 
    # The text itself is copyright (C) VMware Inc.
    #
    
    include("compat.inc");
    
    if (description)
    {
      script_id(61747);
      script_version("1.56");
      script_set_attribute(attribute:"plugin_modification_date", value:"2020/07/30");
    
      script_cve_id("CVE-2009-5029", "CVE-2009-5064", "CVE-2010-0830", "CVE-2010-2761", "CVE-2010-4180", "CVE-2010-4252", "CVE-2010-4410", "CVE-2011-0014", "CVE-2011-1020", "CVE-2011-1089", "CVE-2011-1833", "CVE-2011-2484", "CVE-2011-2496", "CVE-2011-2699", "CVE-2011-3188", "CVE-2011-3209", "CVE-2011-3363", "CVE-2011-3597", "CVE-2011-4108", "CVE-2011-4109", "CVE-2011-4110", "CVE-2011-4128", "CVE-2011-4132", "CVE-2011-4324", "CVE-2011-4325", "CVE-2011-4576", "CVE-2011-4577", "CVE-2011-4609", "CVE-2011-4619", "CVE-2012-0050", "CVE-2012-0060", "CVE-2012-0061", "CVE-2012-0207", "CVE-2012-0393", "CVE-2012-0815", "CVE-2012-0841", "CVE-2012-0864", "CVE-2012-1569", "CVE-2012-1573", "CVE-2012-1583", "CVE-2012-2110");
      script_bugtraq_id(40063, 44199, 45145, 45163, 45164, 46264, 46567, 46740, 47321, 48383, 48802, 49108, 49289, 49626, 49911, 50311, 50609, 50663, 50755, 50798, 50898, 51194, 51257, 51281, 51343, 51366, 51439, 51467, 51563, 52009, 52010, 52011, 52012, 52013, 52014, 52015, 52016, 52017, 52018, 52019, 52020, 52107, 52161, 52201, 52667, 52668, 52865, 53136, 53139, 53158, 53946, 53947, 53948, 53949, 53950, 53951, 53952, 53953, 53954, 53956, 53958, 53959, 53960);
      script_xref(name:"VMSA", value:"2012-0013");
    
      script_name(english:"VMSA-2012-0013 : VMware vSphere and vCOps updates to third-party libraries");
      script_summary(english:"Checks esxupdate output for the patches");
    
      script_set_attribute(
        attribute:"synopsis",
        value:
    "The remote VMware ESXi / ESX host is missing one or more
    security-related patches."
      );
      script_set_attribute(
        attribute:"description",
        value:
    "a. vCenter and ESX update to JRE 1.6.0 Update 31
    
       The Oracle (Sun) JRE is updated to version 1.6.0_31, which
       addresses multiple security issues. Oracle has documented the
       CVE identifiers that are addressed by this update in the Oracle
       Java SE Critical Patch Update Advisory of February 2012.
    
    b. vCenter Update Manager update to JRE 1.5.0 Update 36
    
       The Oracle (Sun) JRE is updated to 1.5.0_36 to address multiple
       security issues.  Oracle has documented the CVE identifiers that
       are addressed in JRE 1.5.0_36 in the Oracle Java SE Critical
       Patch Update Advisory for June 2012.
    
    c. Update to ESX/ESXi userworld OpenSSL library
    
       The ESX/ESXi userworld OpenSSL library is updated from version
       0.9.8p to version 0.9.8t to resolve multiple security issues.
    
       The Common Vulnerabilities and Exposures project (cve.mitre.org)
       has assigned the names CVE-2010-4180, CVE-2010-4252,
       CVE-2011-0014, CVE-2011-4108, CVE-2011-4109, CVE-2011-4576,
       CVE-2011-4577, CVE-2011-4619, and CVE-2012-0050 to these issues.
    
    d. Update to ESX service console OpenSSL RPM
    
       The service console OpenSSL RPM is updated to version
       0.9.8e-22.el5_8.3 to resolve a security issue.
    
       The Common Vulnerabilities and Exposures project (cve.mitre.org)
       has assigned the name CVE-2012-2110 to this issue.
    
    e. Update to ESX service console kernel
    
       The ESX service console kernel is updated to resolve multiple
       security issues.
    
       The Common Vulnerabilities and Exposures project (cve.mitre.org)
       has assigned the names CVE-2011-1833, CVE-2011-2484,
       CVE-2011-2496, CVE-2011-3188, CVE-2011-3209, CVE-2011-3363,
       CVE-2011-4110, CVE-2011-1020, CVE-2011-4132, CVE-2011-4324,
       CVE-2011-4325, CVE-2012-0207, CVE-2011-2699, and CVE-2012-1583
       to these issues.
    
    f. Update to ESX service console Perl RPM
    
       The ESX service console Perl RPM is updated to
       perl-5.8.8.32.1.8999.vmw to resolve multiple security issues.
    
       The Common Vulnerabilities and Exposures project (cve.mitre.org)
       has assigned the names CVE-2010-2761, CVE-2010-4410, and
       CVE-2011-3597 to these issues.
    
    g. Update to ESX service console libxml2 RPMs
    
       The ESX service console libmxl2 RPMs are updated to
       libxml2-2.6.26-2.1.15.el5_8.2 and
       libxml2-python-2.6.26-2.1.15.el5_8.2 to resolve a security
       issue.
    
       The Common Vulnerabilities and Exposures project (cve.mitre.org)
       has assigned the name CVE-2012-0841 to this issue.
    
    h. Update to ESX service console glibc RPM
    
       The ESX service console glibc RPM is updated to version
       glibc-2.5-81.el5_8.1 to resolve multiple security issues.
    
       The Common Vulnerabilities and Exposures project (cve.mitre.org)
      has assigned the names CVE-2009-5029, CVE-2009-5064,
       CVE-2010-0830, CVE-2011-1089, CVE-2011-4609, and CVE-2012-0864
       to these issue.
    
    i. Update to ESX service console GnuTLS RPM
    
       The ESX service console GnuTLS RPM is updated to version
       1.4.1-7.el5_8.2 to resolve multiple security issues.
    
       The Common Vulnerabilities and Exposures project (cve.mitre.org)
       has assigned the names CVE-2011-4128, CVE-2012-1569, and
       CVE-2012-1573 to these issues.
    
    j. Update to ESX service console popt, rpm, rpm-libs,
       and rpm-python RPMS
    
       The ESX service console popt, rpm, rpm-libs, and rpm-python RPMS
       are updated to the following versions to resolve multiple
       security issues :
          - popt-1.10.2.3-28.el5_8
          - rpm-4.4.2.3-28.el5_8
          - rpm-libs-4.4.2.3-28.el5_8
          - rpm-python-4.4.2.3-28.el5_8
    
       The Common Vulnerabilities and Exposures project (cve.mitre.org)
       has assigned the name CVE-2012-0060, CVE-2012-0061, and
       CVE-2012-0815 to these issues.
    
    k. Vulnerability in third-party Apache Struts component
    
       The version of Apache Struts in vCenter Operations has been
       updated to 2.3.4 which addresses an arbitrary file overwrite
       vulnerability. This vulnerability allows an attacker to create
       a denial of service by overwriting arbitrary files without
       authentication. The attacker would need to be on the same network
       as the system where vCOps is installed.
    
       The Common Vulnerabilities and Exposures project (cve.mitre.org) has
       assigned the name CVE-2012-0393 to this issue.
    
       Note: Apache struts 2.3.4 addresses the following issues as well :
       CVE-2011-5057, CVE-2012-0391, CVE-2012-0392, CVE-2012-0394. It
       was found that these do not affect vCOps.
    
       VMware would like to thank Alexander Minozhenko from ERPScan for
       reporting this issue to us."
      );
      script_set_attribute(
        attribute:"see_also",
        value:"http://lists.vmware.com/pipermail/security-announce/2012/000197.html"
      );
      script_set_attribute(attribute:"solution", value:"Apply the missing patches.");
      script_set_cvss_base_vector("CVSS2#AV:N/AC:M/Au:N/C:C/I:C/A:C");
      script_set_cvss_temporal_vector("CVSS2#E:F/RL:OF/RC:C");
      script_set_cvss3_base_vector("CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:H");
      script_set_cvss3_temporal_vector("CVSS:3.0/E:F/RL:O/RC:C");
      script_set_attribute(attribute:"exploitability_ease", value:"Exploits are available");
      script_set_attribute(attribute:"exploit_available", value:"true");
      script_set_attribute(attribute:"exploit_framework_core", value:"true");
      script_set_attribute(attribute:"metasploit_name", value:'Java Applet Field Bytecode Verifier Cache Remote Code Execution');
      script_set_attribute(attribute:"exploit_framework_metasploit", value:"true");
    
      script_set_attribute(attribute:"plugin_type", value:"local");
      script_set_attribute(attribute:"cpe", value:"cpe:/o:vmware:esx:4.0");
      script_set_attribute(attribute:"cpe", value:"cpe:/o:vmware:esx:4.1");
      script_set_attribute(attribute:"cpe", value:"cpe:/o:vmware:esxi:4.1");
      script_set_attribute(attribute:"cpe", value:"cpe:/o:vmware:esxi:5.0");
    
      script_set_attribute(attribute:"vuln_publication_date", value:"2010/06/01");
      script_set_attribute(attribute:"patch_publication_date", value:"2012/08/30");
      script_set_attribute(attribute:"plugin_publication_date", value:"2012/08/31");
      script_set_attribute(attribute:"generated_plugin", value:"current");
      script_end_attributes();
    
      script_category(ACT_GATHER_INFO);
      script_copyright(english:"This script is Copyright (C) 2012-2020 and is owned by Tenable, Inc. or an Affiliate thereof.");
      script_family(english:"VMware ESX Local Security Checks");
    
      script_dependencies("ssh_get_info.nasl");
      script_require_keys("Host/local_checks_enabled", "Host/VMware/release", "Host/VMware/version");
      script_require_ports("Host/VMware/esxupdate", "Host/VMware/esxcli_software_vibs");
    
      exit(0);
    }
    
    
    include("audit.inc");
    include("vmware_esx_packages.inc");
    
    
    if (!get_kb_item("Host/local_checks_enabled")) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED);
    if (!get_kb_item("Host/VMware/release")) audit(AUDIT_OS_NOT, "VMware ESX / ESXi");
    if (
      !get_kb_item("Host/VMware/esxcli_software_vibs") &&
      !get_kb_item("Host/VMware/esxupdate")
    ) audit(AUDIT_PACKAGE_LIST_MISSING);
    
    
    init_esx_check(date:"2012-08-30");
    flag = 0;
    
    
    if (
      esx_check(
        ver           : "ESX 4.0",
        patch         : "ESX400-201209401-SG",
        patch_updates : make_list("ESX400-201302401-SG", "ESX400-201305401-SG", "ESX400-201310401-SG", "ESX400-201404401-SG")
      )
    ) flag++;
    if (
      esx_check(
        ver           : "ESX 4.0",
        patch         : "ESX400-201209402-SG",
        patch_updates : make_list("ESX400-201305404-SG", "ESX400-201310402-SG")
      )
    ) flag++;
    if (esx_check(ver:"ESX 4.0", patch:"ESX400-201209404-SG")) flag++;
    
    if (
      esx_check(
        ver           : "ESX 4.1",
        patch         : "ESX410-201208101-SG",
        patch_updates : make_list("ESX410-201211401-SG", "ESX410-201301401-SG", "ESX410-201304401-SG", "ESX410-201307401-SG", "ESX410-201312401-SG", "ESX410-201404401-SG", "ESX410-Update03")
      )
    ) flag++;
    if (
      esx_check(
        ver           : "ESX 4.1",
        patch         : "ESX410-201208102-SG",
        patch_updates : make_list("ESX410-201301405-SG", "ESX410-201304402-SG", "ESX410-201307405-SG", "ESX410-Update03")
      )
    ) flag++;
    if (
      esx_check(
        ver           : "ESX 4.1",
        patch         : "ESX410-201208103-SG",
        patch_updates : make_list("ESX410-201307403-SG", "ESX410-Update03")
      )
    ) flag++;
    if (
      esx_check(
        ver           : "ESX 4.1",
        patch         : "ESX410-201208104-SG",
        patch_updates : make_list("ESX410-Update03")
      )
    ) flag++;
    if (
      esx_check(
        ver           : "ESX 4.1",
        patch         : "ESX410-201208105-SG",
        patch_updates : make_list("ESX410-Update03")
      )
    ) flag++;
    if (
      esx_check(
        ver           : "ESX 4.1",
        patch         : "ESX410-201208106-SG",
        patch_updates : make_list("ESX410-201307404-SG", "ESX410-Update03")
      )
    ) flag++;
    if (
      esx_check(
        ver           : "ESX 4.1",
        patch         : "ESX410-201208107-SG",
        patch_updates : make_list("ESX410-Update03")
      )
    ) flag++;
    
    if (
      esx_check(
        ver           : "ESXi 4.1",
        patch         : "ESXi410-201208101-SG",
        patch_updates : make_list("ESXi410-201211401-SG", "ESXi410-201301401-SG", "ESXi410-201304401-SG", "ESXi410-201307401-SG", "ESXi410-201312401-SG", "ESXi410-201404401-SG", "ESXi410-Update03")
      )
    ) flag++;
    
    if (esx_check(ver:"ESXi 5.0", vib:"VMware:esx-base:5.0.0-1.25.912577")) flag++;
    
    
    if (flag)
    {
      if (report_verbosity > 0) security_hole(port:0, extra:esx_report_get());
      else security_hole(0);
      exit(0);
    }
    else audit(AUDIT_HOST_NOT, "affected");
    
  • NASL familyScientific Linux Local Security Checks
    NASL idSL_20111206_SCIENTIFIC_LINUX_6_KERNEL_ON_SL6_X.NASL
    descriptionThe kernel packages contain the Linux kernel, the core of any Linux operating system. This update fixes the following security issues : - The proc file system could allow a local, unprivileged user to obtain sensitive information or possibly cause integrity issues. (CVE-2011-1020, Moderate) - Non-member VLAN (virtual LAN) packet handling for interfaces in promiscuous mode and also using the be2net driver could allow an attacker on the local network to cause a denial of service. (CVE-2011-3347, Moderate) - A flaw was found in the Linux kernel in the way splitting two extents in ext4_ext_convert_to_initialized() worked. A local, unprivileged user with access to mount and unmount ext4 file systems could use this flaw to cause a denial of service. (CVE-2011-3638, Moderate) - A NULL pointer dereference flaw was found in the way the Linux kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id61185
    published2012-08-01
    reporterThis script is Copyright (C) 2012-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/61185
    titleScientific Linux Security Update : Scientific Linux 6 kernel on SL6.x i386/x86_64
  • NASL familyOracleVM Local Security Checks
    NASL idORACLEVM_OVMSA-2013-0039.NASL
    descriptionThe remote OracleVM system is missing necessary patches to address critical security updates : please see Oracle VM Security Advisory OVMSA-2013-0039 for details.
    last seen2020-06-01
    modified2020-06-02
    plugin id79507
    published2014-11-26
    reporterThis script is Copyright (C) 2014-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/79507
    titleOracleVM 2.2 : kernel (OVMSA-2013-0039)
  • NASL familyCentOS Local Security Checks
    NASL idCENTOS_RHSA-2012-0007.NASL
    descriptionUpdated kernel packages that fix multiple security issues, several bugs, and add one enhancement are now available for Red Hat Enterprise Linux 5. The Red Hat Security Response Team has rated this update as having important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The kernel packages contain the Linux kernel, the core of any Linux operating system. This update fixes the following security issues : * A buffer overflow flaw was found in the way the Linux kernel
    last seen2020-04-16
    modified2012-01-12
    plugin id57485
    published2012-01-12
    reporterThis script is Copyright (C) 2012-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/57485
    titleCentOS 5 : kernel (CESA-2012:0007)
  • NASL familyScientific Linux Local Security Checks
    NASL idSL_20120110_KERNEL_ON_SL5_X.NASL
    descriptionThe kernel packages contain the Linux kernel, the core of any Linux operating system. This update fixes the following security issues : - A buffer overflow flaw was found in the way the Linux kernel
    last seen2020-03-18
    modified2012-08-01
    plugin id61215
    published2012-08-01
    reporterThis script is Copyright (C) 2012-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/61215
    titleScientific Linux Security Update : kernel on SL5.x i386/x86_64 (20120110)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1205-1.NASL
    descriptionIt was discovered that the /proc filesystem did not correctly handle permission changes when programs executed. A local attacker could hold open files to examine details about programs running with higher privileges, potentially increasing the chances of exploiting additional vulnerabilities. (CVE-2011-1020) Dan Rosenberg discovered that the X.25 Rose network stack did not correctly handle certain fields. If a system was running with Rose enabled, a remote attacker could send specially crafted traffic to gain root privileges. (CVE-2011-1493) Dan Rosenberg discovered that the DCCP stack did not correctly handle certain packet structures. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1770) Vasiliy Kulikov discovered that taskstats listeners were not correctly handled. A local attacker could exploit this to exhaust memory and CPU resources, leading to a denial of service. (CVE-2011-2484) It was discovered that Bluetooth l2cap and rfcomm did not correctly initialize structures. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy. (CVE-2011-2492). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen2020-06-01
    modified2020-06-02
    plugin id56193
    published2011-09-14
    reporterUbuntu Security Notice (C) 2011-2019 Canonical, Inc. / NASL script (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/56193
    titleUbuntu 10.04 LTS : linux-lts-backport-maverick vulnerabilities (USN-1205-1)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1203-1.NASL
    descriptionDan Rosenberg discovered that multiple terminal ioctls did not correctly initialize structure memory. A local attacker could exploit this to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4076, CVE-2010-4077) Alex Shi and Eric Dumazet discovered that the network stack did not correctly handle packet backlogs. A remote attacker could exploit this by sending a large amount of network traffic to cause the system to run out of memory, leading to a denial of service. (CVE-2010-4251, CVE-2010-4805) It was discovered that the /proc filesystem did not correctly handle permission changes when programs executed. A local attacker could hold open files to examine details about programs running with higher privileges, potentially increasing the chances of exploiting additional vulnerabilities. (CVE-2011-1020) Dan Rosenberg discovered that the X.25 Rose network stack did not correctly handle certain fields. If a system was running with Rose enabled, a remote attacker could send specially crafted traffic to gain root privileges. (CVE-2011-1493) Timo Warns discovered that the GUID partition parsing routines did not correctly validate certain structures. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1577) It was discovered that CIFS incorrectly handled authentication. When a user had a CIFS share mounted that required authentication, a local user could mount the same share without knowing the correct password. (CVE-2011-1585) It was discovered that the GRE protocol incorrectly handled netns initialization. A remote attacker could send a packet while the ip_gre module was loading, and crash the system, leading to a denial of service. (CVE-2011-1767) It was discovered that the IP/IP protocol incorrectly handled netns initialization. A remote attacker could send a packet while the ipip module was loading, and crash the system, leading to a denial of service. (CVE-2011-1768) Ben Hutchings reported a flaw in the kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id56191
    published2011-09-14
    reporterUbuntu Security Notice (C) 2011-2013 Canonical, Inc. / NASL script (C) 2011-2016 Tenable Network Security, Inc.
    sourcehttps://www.tenable.com/plugins/nessus/56191
    titleUbuntu 10.04 LTS : linux-mvl-dove vulnerabilities (USN-1203-1)
  • NASL familySuSE Local Security Checks
    NASL idSUSE_11_KERNEL-110718.NASL
    descriptionThe SUSE Linux Enterprise 11 Service Pack 1 kernel was updated to 2.6.32.43 and fixes various bugs and security issues. The following security issues were fixed : - The normal mmap paths all avoid creating a mapping where the pgoff inside the mapping could wrap around due to overflow. However, an expanding mremap() can take such a non-wrapping mapping and make it bigger and cause a wrapping condition. (CVE-2011-2496) - A local unprivileged user able to access a NFS filesystem could use file locking to deadlock parts of an nfs server under some circumstance. (CVE-2011-2491) - Fixed a race between ksmd and other memory management code, which could result in a NULL ptr dereference and kernel crash. (CVE-2011-2183) - In both trigger_scan and sched_scan operations, we were checking for the SSID length before assigning the value correctly. Since the memory was just kzalloced, the check was always failing and SSID with over 32 characters were allowed to go through. This required CAP_NET_ADMIN privileges to be exploited. (CVE-2011-2517) - A malicious user or buggy application could inject diagnosing byte code and trigger an infinite loop in inet_diag_bc_audit(). (CVE-2011-2213) - The code for evaluating LDM partitions (in fs/partitions/ldm.c) contained bugs that could crash the kernel for certain corrupted LDM partitions. (CVE-2011-1017 / CVE-2011-1012 / CVE-2011-2182) - Multiple integer overflows in the next_pidmap function in kernel/pid.c in the Linux kernel allowed local users to cause a denial of service (system crash) via a crafted (1) getdents or (2) readdir system call. (CVE-2011-1593) - The proc filesystem implementation in the Linux kernel did not restrict access to the /proc directory tree of a process after this process performs an exec of a setuid program, which allowed local users to obtain sensitive information or cause a denial of service via open, lseek, read, and write system calls. (CVE-2011-1020) - When using a setuid root mount.cifs, local users could hijack password protected mounted CIFS shares of other local users. (CVE-2011-1585) - Kernel information via the TPM devices could by used by local attackers to read kernel memory. (CVE-2011-1160) - The Linux kernel automatically evaluated partition tables of storage devices. The code for evaluating EFI GUID partitions (in fs/partitions/efi.c) contained a bug that causes a kernel oops on certain corrupted GUID partition tables, which might be used by local attackers to crash the kernel or potentially execute code. (CVE-2011-1577) - In a bluetooth ioctl, struct sco_conninfo has one padding byte in the end. Local variable cinfo of type sco_conninfo was copied to userspace with this uninizialized one byte, leading to an old stack contents leak. (CVE-2011-1078) - In a bluetooth ioctl, struct ca is copied from userspace. It was not checked whether the
    last seen2020-06-01
    modified2020-06-02
    plugin id55686
    published2011-07-26
    reporterThis script is Copyright (C) 2011-2019 Tenable Network Security, Inc.
    sourcehttps://www.tenable.com/plugins/nessus/55686
    titleSuSE 11.1 Security Update : Linux kernel (SAT Patch Numbers 4884 / 4888 / 4889)
  • NASL familyDebian Local Security Checks
    NASL idDEBIAN_DSA-2310.NASL
    descriptionSeveral vulnerabilities have been discovered in the Linux kernel that may lead to a privilege escalation, denial of service or information leak. The Common Vulnerabilities and Exposures project identifies the following problems : - CVE-2009-4067 Rafael Dominguez Vega of MWR InfoSecurity reported an issue in the auerswald module, a driver for Auerswald PBX/System Telephone USB devices. Attackers with physical access to a system
    last seen2020-03-17
    modified2011-09-26
    plugin id56285
    published2011-09-26
    reporterThis script is Copyright (C) 2011-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/56285
    titleDebian DSA-2310-1 : linux-2.6 - privilege escalation/denial of service/information leak
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1208-1.NASL
    descriptionDan Rosenberg discovered that multiple terminal ioctls did not correctly initialize structure memory. A local attacker could exploit this to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4076, CVE-2010-4077) Alex Shi and Eric Dumazet discovered that the network stack did not correctly handle packet backlogs. A remote attacker could exploit this by sending a large amount of network traffic to cause the system to run out of memory, leading to a denial of service. (CVE-2010-4251, CVE-2010-4805) It was discovered that the /proc filesystem did not correctly handle permission changes when programs executed. A local attacker could hold open files to examine details about programs running with higher privileges, potentially increasing the chances of exploiting additional vulnerabilities. (CVE-2011-1020) Dan Rosenberg discovered that the X.25 Rose network stack did not correctly handle certain fields. If a system was running with Rose enabled, a remote attacker could send specially crafted traffic to gain root privileges. (CVE-2011-1493) Timo Warns discovered that the GUID partition parsing routines did not correctly validate certain structures. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1577) It was discovered that CIFS incorrectly handled authentication. When a user had a CIFS share mounted that required authentication, a local user could mount the same share without knowing the correct password. (CVE-2011-1585) It was discovered that the GRE protocol incorrectly handled netns initialization. A remote attacker could send a packet while the ip_gre module was loading, and crash the system, leading to a denial of service. (CVE-2011-1767) It was discovered that the IP/IP protocol incorrectly handled netns initialization. A remote attacker could send a packet while the ipip module was loading, and crash the system, leading to a denial of service. (CVE-2011-1768) Ben Hutchings reported a flaw in the kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id56207
    published2011-09-15
    reporterUbuntu Security Notice (C) 2011-2013 Canonical, Inc. / NASL script (C) 2011-2016 Tenable Network Security, Inc.
    sourcehttps://www.tenable.com/plugins/nessus/56207
    titleUbuntu 10.10 : linux-mvl-dove vulnerabilities (USN-1208-1)
  • NASL familyDebian Local Security Checks
    NASL idDEBIAN_DSA-2303.NASL
    descriptionSeveral vulnerabilities have been discovered in the Linux kernel that may lead to a denial of service or privilege escalation. The Common Vulnerabilities and Exposures project identifies the following problems : - CVE-2011-1020 Kees Cook discovered an issue in the /proc filesystem that allows local users to gain access to sensitive process information after execution of a setuid binary. - CVE-2011-1576 Ryan Sweat discovered an issue in the VLAN implementation. Local users may be able to cause a kernel memory leak, resulting in a denial of service. - CVE-2011-2484 Vasiliy Kulikov of Openwall discovered that the number of exit handlers that a process can register is not capped, resulting in local denial of service through resource exhaustion (CPU time and memory). - CVE-2011-2491 Vasily Averin discovered an issue with the NFS locking implementation. A malicious NFS server can cause a client to hang indefinitely in an unlock call. - CVE-2011-2492 Marek Kroemeke and Filip Palian discovered that uninitialized struct elements in the Bluetooth subsystem could lead to a leak of sensitive kernel memory through leaked stack memory. - CVE-2011-2495 Vasiliy Kulikov of Openwall discovered that the io file of a process
    last seen2020-03-17
    modified2011-09-09
    plugin id56130
    published2011-09-09
    reporterThis script is Copyright (C) 2011-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/56130
    titleDebian DSA-2303-2 : linux-2.6 - privilege escalation/denial of service/information leak
  • NASL familyMisc.
    NASL idVMWARE_VMSA-2012-0013_REMOTE.NASL
    descriptionThe remote VMware ESX / ESXi host is missing a security-related patch. It is, therefore, affected by multiple vulnerabilities, including remote code execution vulnerabilities, in several third-party libraries : - Apache Struts - glibc - GnuTLS - JRE - kernel - libxml2 - OpenSSL - Perl - popt and rpm
    last seen2020-06-01
    modified2020-06-02
    plugin id89038
    published2016-02-29
    reporterThis script is Copyright (C) 2016-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/89038
    titleVMware ESX / ESXi Third-Party Libraries Multiple Vulnerabilities (VMSA-2012-0013) (remote check)
  • NASL familySuSE Local Security Checks
    NASL idSUSE_11_4_KERNEL-110726.NASL
    descriptionThe openSUSE 11.4 kernel was updated to 2.6.37.6 fixing lots of bugs and security issues. Following security issues have been fixed: CVE-2011-2495: The /proc/PID/io interface could be used by local attackers to gain information on other processes like number of password characters typed or similar. CVE-2011-2484: The add_del_listener function in kernel/taskstats.c in the Linux kernel did not prevent multiple registrations of exit handlers, which allowed local users to cause a denial of service (memory and CPU consumption), and bypass the OOM Killer, via a crafted application. CVE-2011-2022: The agp_generic_remove_memory function in drivers/char/agp/generic.c in the Linux kernel before 2.6.38.5 did not validate a certain start parameter, which allowed local users to gain privileges or cause a denial of service (system crash) via a crafted AGPIOC_UNBIND agp_ioctl ioctl call, a different vulnerability than CVE-2011-1745. CVE-2011-1745: Integer overflow in the agp_generic_insert_memory function in drivers/char/agp/generic.c in the Linux kernel allowed local users to gain privileges or cause a denial of service (system crash) via a crafted AGPIOC_BIND agp_ioctl ioctl call. CVE-2011-2493: A denial of service on mounting invalid ext4 filesystems was fixed. CVE-2011-2491: A local unprivileged user able to access a NFS filesystem could use file locking to deadlock parts of an nfs server under some circumstance. CVE-2011-2498: Also account PTE pages when calculating OOM scoring, which could have lead to a denial of service. CVE-2011-2496: The normal mmap paths all avoid creating a mapping where the pgoff inside the mapping could wrap around due to overflow. However, an expanding mremap() can take such a non-wrapping mapping and make it bigger and cause a wrapping condition. CVE-2011-1017,CVE-2011-2182: The code for evaluating LDM partitions (in fs/partitions/ldm.c) contained bugs that could crash the kernel for certain corrupted LDM partitions. CVE-2011-1479: A regression in inotify fix for a memory leak could lead to a double free corruption which could crash the system. CVE-2011-1927: A missing route validation issue in ip_expire() could be used by remote attackers to trigger a NULL ptr dereference, crashing parts of the kernel. CVE-2011-1593: Multiple integer overflows in the next_pidmap function in kernel/pid.c in the Linux kernel allowed local users to cause a denial of service (system crash) via a crafted (1) getdents or (2) readdir system call. CVE-2011-1020: The proc filesystem implementation in the Linux kernel did not restrict access to the /proc directory tree of a process after this process performs an exec of a setuid program, which allowed local users to obtain sensitive information or cause a denial of service via open, lseek, read, and write system calls.
    last seen2020-06-01
    modified2020-06-02
    plugin id75880
    published2014-06-13
    reporterThis script is Copyright (C) 2014-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/75880
    titleopenSUSE Security Update : kernel (openSUSE-SU-2011:0860-1)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1218-1.NASL
    descriptionDan Rosenberg discovered that multiple terminal ioctls did not correctly initialize structure memory. A local attacker could exploit this to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4076, CVE-2010-4077) Alex Shi and Eric Dumazet discovered that the network stack did not correctly handle packet backlogs. A remote attacker could exploit this by sending a large amount of network traffic to cause the system to run out of memory, leading to a denial of service. (CVE-2010-4251, CVE-2010-4805) It was discovered that the /proc filesystem did not correctly handle permission changes when programs executed. A local attacker could hold open files to examine details about programs running with higher privileges, potentially increasing the chances of exploiting additional vulnerabilities. (CVE-2011-1020) Dan Rosenberg discovered that the X.25 Rose network stack did not correctly handle certain fields. If a system was running with Rose enabled, a remote attacker could send specially crafted traffic to gain root privileges. (CVE-2011-1493) Timo Warns discovered that the GUID partition parsing routines did not correctly validate certain structures. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1577) It was discovered that CIFS incorrectly handled authentication. When a user had a CIFS share mounted that required authentication, a local user could mount the same share without knowing the correct password. (CVE-2011-1585) It was discovered that the GRE protocol incorrectly handled netns initialization. A remote attacker could send a packet while the ip_gre module was loading, and crash the system, leading to a denial of service. (CVE-2011-1767) It was discovered that the IP/IP protocol incorrectly handled netns initialization. A remote attacker could send a packet while the ipip module was loading, and crash the system, leading to a denial of service. (CVE-2011-1768) Ben Hutchings reported a flaw in the kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id56343
    published2011-09-30
    reporterUbuntu Security Notice (C) 2011-2019 Canonical, Inc. / NASL script (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/56343
    titleUbuntu 10.04 LTS : linux vulnerabilities (USN-1218-1)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1202-1.NASL
    descriptionDan Rosenberg discovered that several network ioctls did not clear kernel memory correctly. A local user could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3296, CVE-2010-3297) Brad Spengler discovered that stack memory for new a process was not correctly calculated. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-3858) Dan Rosenberg discovered that the Linux kernel TIPC implementation contained multiple integer signedness errors. A local attacker could exploit this to gain root privileges. (CVE-2010-3859) Dan Rosenberg discovered that the CAN protocol on 64bit systems did not correctly calculate the size of certain buffers. A local attacker could exploit this to crash the system or possibly execute arbitrary code as the root user. (CVE-2010-3874) Nelson Elhage discovered that the Linux kernel IPv4 implementation did not properly audit certain bytecodes in netlink messages. A local attacker could exploit this to cause the kernel to hang, leading to a denial of service. (CVE-2010-3880) Dan Rosenberg discovered that IPC structures were not correctly initialized on 64bit systems. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4073) Dan Rosenberg discovered that multiple terminal ioctls did not correctly initialize structure memory. A local attacker could exploit this to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4075, CVE-2010-4076, CVE-2010-4077) Dan Rosenberg discovered that the RME Hammerfall DSP audio interface driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4080, CVE-2010-4081) Dan Rosenberg discovered that the VIA video driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4082) Dan Rosenberg discovered that the semctl syscall did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4083) James Bottomley discovered that the ICP vortex storage array controller driver did not validate certain sizes. A local attacker on a 64bit system could exploit this to crash the kernel, leading to a denial of service. (CVE-2010-4157) Dan Rosenberg discovered that the Linux kernel L2TP implementation contained multiple integer signedness errors. A local attacker could exploit this to to crash the kernel, or possibly gain root privileges. (CVE-2010-4160) Dan Rosenberg discovered that certain iovec operations did not calculate page counts correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4162) Dan Rosenberg discovered that the SCSI subsystem did not correctly validate iov segments. A local attacker with access to a SCSI device could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2010-4163, CVE-2010-4668) Dave Jones discovered that the mprotect system call did not correctly handle merged VMAs. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4169) Dan Rosenberg discovered that the RDS protocol did not correctly check ioctl arguments. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4175) Alan Cox discovered that the HCI UART driver did not correctly check if a write operation was available. If the mmap_min-addr sysctl was changed from the Ubuntu default to a value of 0, a local attacker could exploit this flaw to gain root privileges. (CVE-2010-4242) Brad Spengler discovered that the kernel did not correctly account for userspace memory allocations during exec() calls. A local attacker could exploit this to consume all system memory, leading to a denial of service. (CVE-2010-4243) It was discovered that multithreaded exec did not handle CPU timers correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4248) It was discovered that named pipes did not correctly handle certain fcntl calls. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4256) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Dan Carpenter discovered that the Infiniband driver did not correctly handle certain requests. A local user could exploit this to crash the system or potentially gain root privileges. (CVE-2010-4649, CVE-2011-1044) Kees Cook discovered that some ethtool functions did not correctly clear heap memory. A local attacker with CAP_NET_ADMIN privileges could exploit this to read portions of kernel heap memory, leading to a loss of privacy. (CVE-2010-4655) Kees Cook discovered that the IOWarrior USB device driver did not correctly check certain size fields. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2010-4656) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Dan Carpenter discovered that the TTPCI DVB driver did not check certain values during an ioctl. If the dvb-ttpci module was loaded, a local attacker could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-0521) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Rafael Dominguez Vega discovered that the caiaq Native Instruments USB driver did not correctly validate string lengths. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2011-0712) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Timo Warns discovered that MAC partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system or potentially gain root privileges. (CVE-2011-1010) Timo Warns discovered that LDM partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1012) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system. (CVE-2011-1019) It was discovered that the /proc filesystem did not correctly handle permission changes when programs executed. A local attacker could hold open files to examine details about programs running with higher privileges, potentially increasing the chances of exploiting additional vulnerabilities. (CVE-2011-1020) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Nelson Elhage discovered that the epoll subsystem did not correctly handle certain structures. A local attacker could create malicious requests that would hang the system, leading to a denial of service. (CVE-2011-1082) Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090) Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Timo Warns discovered that OSF partition parsing routines did not correctly clear memory. A local attacker with physical access could plug in a specially crafted block device to read kernel memory, leading to a loss of privacy. (CVE-2011-1163) Dan Rosenberg discovered that some ALSA drivers did not correctly check the adapter index during ioctl calls. If this driver was loaded, a local attacker could make a specially crafted ioctl call to gain root privileges. (CVE-2011-1169) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Ryan Sweat discovered that the GRO code did not correctly validate memory. In some configurations on systems using VLANs, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1478) Dan Rosenberg discovered that the X.25 Rose network stack did not correctly handle certain fields. If a system was running with Rose enabled, a remote attacker could send specially crafted traffic to gain root privileges. (CVE-2011-1493) Dan Rosenberg discovered that MPT devices did not correctly validate certain values in ioctl calls. If these drivers were loaded, a local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2011-1494, CVE-2011-1495) Timo Warns discovered that the GUID partition parsing routines did not correctly validate certain structures. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1577) Tavis Ormandy discovered that the pidmap function did not correctly handle large requests. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1593) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598, CVE-2011-1748) Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl values. A local attacker with access to the video subsystem could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-1745, CVE-2011-2022) Vasiliy Kulikov discovered that the AGP driver did not check the size of certain memory allocations. A local attacker with access to the video subsystem could exploit this to run the system out of memory, leading to a denial of service. (CVE-2011-1746) Dan Rosenberg discovered that the DCCP stack did not correctly handle certain packet structures. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1770) Vasiliy Kulikov and Dan Rosenberg discovered that ecryptfs did not correctly check the origin of mount points. A local attacker could exploit this to trick the system into unmounting arbitrary mount points, leading to a denial of service. (CVE-2011-1833) Vasiliy Kulikov discovered that taskstats listeners were not correctly handled. A local attacker could expoit this to exhaust memory and CPU resources, leading to a denial of service. (CVE-2011-2484) It was discovered that Bluetooth l2cap and rfcomm did not correctly initialize structures. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy. (CVE-2011-2492) Fernando Gont discovered that the IPv6 stack used predictable fragment identification numbers. A remote attacker could exploit this to exhaust network resources, leading to a denial of service. (CVE-2011-2699) The performance counter subsystem did not correctly handle certain counters. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2918)
    last seen2020-06-01
    modified2020-06-02
    plugin id56190
    published2011-09-14
    reporterUbuntu Security Notice (C) 2011 Canonical, Inc. / NASL script (C) 2011-2016 Tenable Network Security, Inc.
    sourcehttps://www.tenable.com/plugins/nessus/56190
    titleUSN-1202-1 : linux-ti-omap4 vulnerabilities
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1256-1.NASL
    descriptionIt was discovered that the /proc filesystem did not correctly handle permission changes when programs executed. A local attacker could hold open files to examine details about programs running with higher privileges, potentially increasing the chances of exploiting additional vulnerabilities. (CVE-2011-1020) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Ryan Sweat discovered that the GRO code did not correctly validate memory. In some configurations on systems using VLANs, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1478) It was discovered that the security fix for CVE-2010-4250 introduced a regression. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1479) Dan Rosenberg discovered that the X.25 Rose network stack did not correctly handle certain fields. If a system was running with Rose enabled, a remote attacker could send specially crafted traffic to gain root privileges. (CVE-2011-1493) It was discovered that the Stream Control Transmission Protocol (SCTP) implementation incorrectly calculated lengths. If the net.sctp.addip_enable variable was turned on, a remote attacker could send specially crafted traffic to crash the system. (CVE-2011-1573) Ryan Sweat discovered that the kernel incorrectly handled certain VLAN packets. On some systems, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1576) Timo Warns discovered that the GUID partition parsing routines did not correctly validate certain structures. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1577) Phil Oester discovered that the network bonding system did not correctly handle large queues. On some systems, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1581) It was discovered that CIFS incorrectly handled authentication. When a user had a CIFS share mounted that required authentication, a local user could mount the same share without knowing the correct password. (CVE-2011-1585) It was discovered that the GRE protocol incorrectly handled netns initialization. A remote attacker could send a packet while the ip_gre module was loading, and crash the system, leading to a denial of service. (CVE-2011-1767) It was discovered that the IP/IP protocol incorrectly handled netns initialization. A remote attacker could send a packet while the ipip module was loading, and crash the system, leading to a denial of service. (CVE-2011-1768) Ben Greear discovered that CIFS did not correctly handle direct I/O. A local attacker with access to a CIFS partition could exploit this to crash the system, leading to a denial of service. (CVE-2011-1771) Timo Warns discovered that the EFI GUID partition table was not correctly parsed. A physically local attacker that could insert mountable devices could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1776) Vasiliy Kulikov and Dan Rosenberg discovered that ecryptfs did not correctly check the origin of mount points. A local attacker could exploit this to trick the system into unmounting arbitrary mount points, leading to a denial of service. (CVE-2011-1833) Ben Hutchings reported a flaw in the kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id56768
    published2011-11-10
    reporterUbuntu Security Notice (C) 2011-2019 Canonical, Inc. / NASL script (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/56768
    titleUbuntu 10.04 LTS : linux-lts-backport-natty vulnerabilities (USN-1256-1)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1204-1.NASL
    descriptionDan Rosenberg discovered that the Linux kernel TIPC implementation contained multiple integer signedness errors. A local attacker could exploit this to gain root privileges. (CVE-2010-3859) Dan Rosenberg discovered that multiple terminal ioctls did not correctly initialize structure memory. A local attacker could exploit this to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4075, CVE-2010-4076, CVE-2010-4077) Dan Rosenberg discovered that the socket filters did not correctly initialize structure memory. A local attacker could create malicious filters to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4158) Dan Rosenberg discovered that the Linux kernel L2TP implementation contained multiple integer signedness errors. A local attacker could exploit this to to crash the kernel, or possibly gain root privileges. (CVE-2010-4160) Dan Rosenberg discovered that certain iovec operations did not calculate page counts correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4162) Dan Rosenberg discovered that the SCSI subsystem did not correctly validate iov segments. A local attacker with access to a SCSI device could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2010-4163, CVE-2010-4668) Dan Rosenberg discovered that the RDS protocol did not correctly check ioctl arguments. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4175) Alan Cox discovered that the HCI UART driver did not correctly check if a write operation was available. If the mmap_min-addr sysctl was changed from the Ubuntu default to a value of 0, a local attacker could exploit this flaw to gain root privileges. (CVE-2010-4242) Brad Spengler discovered that the kernel did not correctly account for userspace memory allocations during exec() calls. A local attacker could exploit this to consume all system memory, leading to a denial of service. (CVE-2010-4243) Alex Shi and Eric Dumazet discovered that the network stack did not correctly handle packet backlogs. A remote attacker could exploit this by sending a large amount of network traffic to cause the system to run out of memory, leading to a denial of service. (CVE-2010-4251, CVE-2010-4805) It was discovered that the ICMP stack did not correctly handle certain unreachable messages. If a remote attacker were able to acquire a socket lock, they could send specially crafted traffic that would crash the system, leading to a denial of service. (CVE-2010-4526) Dan Carpenter discovered that the Infiniband driver did not correctly handle certain requests. A local user could exploit this to crash the system or potentially gain root privileges. (CVE-2010-4649, CVE-2011-1044) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Timo Warns discovered that MAC partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system or potentially gain root privileges. (CVE-2011-1010) Timo Warns discovered that LDM partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1012) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) It was discovered that the /proc filesystem did not correctly handle permission changes when programs executed. A local attacker could hold open files to examine details about programs running with higher privileges, potentially increasing the chances of exploiting additional vulnerabilities. (CVE-2011-1020) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Nelson Elhage discovered that the epoll subsystem did not correctly handle certain structures. A local attacker could create malicious requests that would hang the system, leading to a denial of service. (CVE-2011-1082) Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090) Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Timo Warns discovered that OSF partition parsing routines did not correctly clear memory. A local attacker with physical access could plug in a specially crafted block device to read kernel memory, leading to a loss of privacy. (CVE-2011-1163) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Ryan Sweat discovered that the GRO code did not correctly validate memory. In some configurations on systems using VLANs, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1478) Dan Rosenberg discovered that the X.25 Rose network stack did not correctly handle certain fields. If a system was running with Rose enabled, a remote attacker could send specially crafted traffic to gain root privileges. (CVE-2011-1493) Timo Warns discovered that the GUID partition parsing routines did not correctly validate certain structures. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1577) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598) Dan Rosenberg discovered that the DCCP stack did not correctly handle certain packet structures. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1770) Vasiliy Kulikov and Dan Rosenberg discovered that ecryptfs did not correctly check the origin of mount points. A local attacker could exploit this to trick the system into unmounting arbitrary mount points, leading to a denial of service. (CVE-2011-1833) Vasiliy Kulikov discovered that taskstats listeners were not correctly handled. A local attacker could expoit this to exhaust memory and CPU resources, leading to a denial of service. (CVE-2011-2484) It was discovered that Bluetooth l2cap and rfcomm did not correctly initialize structures. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy. (CVE-2011-2492) Fernando Gont discovered that the IPv6 stack used predictable fragment identification numbers. A remote attacker could exploit this to exhaust network resources, leading to a denial of service. (CVE-2011-2699) The performance counter subsystem did not correctly handle certain counters. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2918)
    last seen2020-06-01
    modified2020-06-02
    plugin id56192
    published2011-09-14
    reporterUbuntu Security Notice (C) 2011 Canonical, Inc. / NASL script (C) 2011-2016 Tenable Network Security, Inc.
    sourcehttps://www.tenable.com/plugins/nessus/56192
    titleUSN-1204-1 : linux-fsl-imx51 vulnerabilities
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1212-1.NASL
    descriptionGoldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) It was discovered that the /proc filesystem did not correctly handle permission changes when programs executed. A local attacker could hold open files to examine details about programs running with higher privileges, potentially increasing the chances of exploiting additional vulnerabilities. (CVE-2011-1020) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Dan Rosenberg discovered that the X.25 Rose network stack did not correctly handle certain fields. If a system was running with Rose enabled, a remote attacker could send specially crafted traffic to gain root privileges. (CVE-2011-1493) Dan Rosenberg discovered that MPT devices did not correctly validate certain values in ioctl calls. If these drivers were loaded, a local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2011-1494, CVE-2011-1495) Timo Warns discovered that the GUID partition parsing routines did not correctly validate certain structures. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1577) Phil Oester discovered that the network bonding system did not correctly handle large queues. On some systems, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1581) Tavis Ormandy discovered that the pidmap function did not correctly handle large requests. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1593) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598, CVE-2011-1748) Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl values. A local attacker with access to the video subsystem could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-1745, CVE-2011-2022) Vasiliy Kulikov discovered that the AGP driver did not check the size of certain memory allocations. A local attacker with access to the video subsystem could exploit this to run the system out of memory, leading to a denial of service. (CVE-2011-1746) Dan Rosenberg discovered that the DCCP stack did not correctly handle certain packet structures. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1770) Ben Greear discovered that CIFS did not correctly handle direct I/O. A local attacker with access to a CIFS partition could exploit this to crash the system, leading to a denial of service. (CVE-2011-1771) Vasiliy Kulikov and Dan Rosenberg discovered that ecryptfs did not correctly check the origin of mount points. A local attacker could exploit this to trick the system into unmounting arbitrary mount points, leading to a denial of service. (CVE-2011-1833) Vasiliy Kulikov discovered that taskstats listeners were not correctly handled. A local attacker could expoit this to exhaust memory and CPU resources, leading to a denial of service. (CVE-2011-2484) It was discovered that Bluetooth l2cap and rfcomm did not correctly initialize structures. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy. (CVE-2011-2492) Sami Liedes discovered that ext4 did not correctly handle missing root inodes. A local attacker could trigger the mount of a specially crafted filesystem to cause the system to crash, leading to a denial of service. (CVE-2011-2493) It was discovered that GFS2 did not correctly check block sizes. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2689) Fernando Gont discovered that the IPv6 stack used predictable fragment identification numbers. A remote attacker could exploit this to exhaust network resources, leading to a denial of service. (CVE-2011-2699) The performance counter subsystem did not correctly handle certain counters. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2918)
    last seen2020-06-01
    modified2020-06-02
    plugin id56257
    published2011-09-22
    reporterUbuntu Security Notice (C) 2011 Canonical, Inc. / NASL script (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/56257
    titleUSN-1212-1 : linux-ti-omap4 vulnerabilities
  • NASL familyRed Hat Local Security Checks
    NASL idREDHAT-RHSA-2012-0116.NASL
    descriptionUpdated kernel packages that fix various security issues and several bugs are now available for Red Hat Enterprise Linux 6.1 Extended Update Support. The Red Hat Security Response Team has rated this update as having moderate security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The kernel packages contain the Linux kernel, the core of any Linux operating system. This update fixes the following security issues : * The proc file system could allow a local, unprivileged user to obtain sensitive information or possibly cause integrity issues. (CVE-2011-1020, Moderate) * Non-member VLAN (virtual LAN) packet handling for interfaces in promiscuous mode and also using the be2net driver could allow an attacker on the local network to cause a denial of service. (CVE-2011-3347, Moderate) * A missing validation flaw was found in the Linux kernel
    last seen2020-04-12
    modified2013-01-24
    plugin id64027
    published2013-01-24
    reporterThis script is Copyright (C) 2013-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/64027
    titleRHEL 6 : kernel (RHSA-2012:0116)
  • NASL familyRed Hat Local Security Checks
    NASL idREDHAT-RHSA-2012-0007.NASL
    descriptionUpdated kernel packages that fix multiple security issues, several bugs, and add one enhancement are now available for Red Hat Enterprise Linux 5. The Red Hat Security Response Team has rated this update as having important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The kernel packages contain the Linux kernel, the core of any Linux operating system. This update fixes the following security issues : * A buffer overflow flaw was found in the way the Linux kernel
    last seen2020-04-16
    modified2012-01-11
    plugin id57481
    published2012-01-11
    reporterThis script is Copyright (C) 2012-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/57481
    titleRHEL 5 : kernel (RHSA-2012:0007)
  • NASL familyRed Hat Local Security Checks
    NASL idREDHAT-RHSA-2011-1253.NASL
    descriptionUpdated kernel-rt packages that fix multiple security issues and various bugs are now available for Red Hat Enterprise MRG 2.0. The Red Hat Security Response Team has rated this update as having important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. Security fixes : * A flaw in the SCTP and DCCP implementations could allow a remote attacker to cause a denial of service. (CVE-2010-4526, CVE-2011-1770, Important) * Flaws in the Management Module Support for Message Passing Technology (MPT) based controllers could allow a local, unprivileged user to cause a denial of service, an information leak, or escalate their privileges. (CVE-2011-1494, CVE-2011-1495, Important) * Flaws in the AGPGART driver, and a flaw in agp_allocate_memory(), could allow a local user to cause a denial of service or escalate their privileges. (CVE-2011-1745, CVE-2011-2022, CVE-2011-1746, Important) * A flaw in the client-side NLM implementation could allow a local, unprivileged user to cause a denial of service. (CVE-2011-2491, Important) * A flaw in the Bluetooth implementation could allow a remote attacker to cause a denial of service or escalate their privileges. (CVE-2011-2497, Important) * Flaws in the netlink-based wireless configuration interface could allow a local user, who has the CAP_NET_ADMIN capability, to cause a denial of service or escalate their privileges on systems that have an active wireless interface. (CVE-2011-2517, Important) * The maximum file offset handling for ext4 file systems could allow a local, unprivileged user to cause a denial of service. (CVE-2011-2695, Important) * A local, unprivileged user could allocate large amounts of memory not visible to the OOM killer, causing a denial of service. (CVE-2010-4243, Moderate) * The proc file system could allow a local, unprivileged user to obtain sensitive information or possibly cause integrity issues. (CVE-2011-1020, Moderate) * A local, privileged user could possibly write arbitrary kernel memory via /sys/kernel/debug/acpi/custom_method. (CVE-2011-1021, Moderate) * Inconsistency in the methods for allocating and freeing NFSv4 ACL data; CVE-2010-4250 fix caused a regression; a flaw in next_pidmap() and inet_diag_bc_audit(); flaws in the CAN implementation; a race condition in the memory merging support; a flaw in the taskstats subsystem; and the way mapping expansions were handled could allow a local, unprivileged user to cause a denial of service. (CVE-2011-1090, CVE-2011-1479, CVE-2011-1593, CVE-2011-2213, CVE-2011-1598, CVE-2011-1748, CVE-2011-2183, CVE-2011-2484, CVE-2011-2496, Moderate) * A flaw in GRO could result in a denial of service when a malformed VLAN frame is received. (CVE-2011-1478, Moderate) * napi_reuse_skb() could be called on VLAN packets allowing an attacker on the local network to possibly trigger a denial of service. (CVE-2011-1576, Moderate) * A denial of service could occur if packets were received while the ipip or ip_gre module was being loaded. (CVE-2011-1767, CVE-2011-1768, Moderate) * Information leaks. (CVE-2011-1160, CVE-2011-2492, CVE-2011-2495, Low) * Flaws in the EFI GUID Partition Table implementation could allow a local attacker to cause a denial of service. (CVE-2011-1577, CVE-2011-1776, Low) * While a user has a CIFS share mounted that required successful authentication, a local, unprivileged user could mount that share without knowing the correct password if mount.cifs was setuid root. (CVE-2011-1585, Low) Red Hat would like to thank Dan Rosenberg for reporting CVE-2011-1770, CVE-2011-1494, CVE-2011-1495, CVE-2011-2497, and CVE-2011-2213; Vasiliy Kulikov of Openwall for reporting CVE-2011-1745, CVE-2011-2022, CVE-2011-1746, CVE-2011-2484, and CVE-2011-2495; Vasily Averin for reporting CVE-2011-2491; Brad Spengler for reporting CVE-2010-4243; Kees Cook for reporting CVE-2011-1020; Robert Swiecki for reporting CVE-2011-1593 and CVE-2011-2496; Oliver Hartkopp for reporting CVE-2011-1748; Andrea Righi for reporting CVE-2011-2183; Ryan Sweat for reporting CVE-2011-1478 and CVE-2011-1576; Peter Huewe for reporting CVE-2011-1160; Marek Kroemeke and Filip Palian for reporting CVE-2011-2492; and Timo Warns for reporting CVE-2011-1577 and CVE-2011-1776.
    last seen2020-06-01
    modified2020-06-02
    plugin id76634
    published2014-07-22
    reporterThis script is Copyright (C) 2014-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/76634
    titleRHEL 6 : MRG (RHSA-2011:1253)
  • NASL familyOracle Linux Local Security Checks
    NASL idORACLELINUX_ELSA-2012-0007.NASL
    descriptionFrom Red Hat Security Advisory 2012:0007 : Updated kernel packages that fix multiple security issues, several bugs, and add one enhancement are now available for Red Hat Enterprise Linux 5. The Red Hat Security Response Team has rated this update as having important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The kernel packages contain the Linux kernel, the core of any Linux operating system. This update fixes the following security issues : * A buffer overflow flaw was found in the way the Linux kernel
    last seen2020-04-16
    modified2013-07-12
    plugin id68427
    published2013-07-12
    reporterThis script is Copyright (C) 2013-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/68427
    titleOracle Linux 5 : kernel (ELSA-2012-0007)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1189-1.NASL
    descriptionIt was discovered that the /proc filesystem did not correctly handle permission changes when programs executed. A local attacker could hold open files to examine details about programs running with higher privileges, potentially increasing the chances of exploiting additional vulnerabilities. (CVE-2011-1020) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Dan Rosenberg discovered that the X.25 Rose network stack did not correctly handle certain fields. If a system was running with Rose enabled, a remote attacker could send specially crafted traffic to gain root privileges. (CVE-2011-1493) It was discovered that Bluetooth l2cap and rfcomm did not correctly initialize structures. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy. (CVE-2011-2492) Dan Rosenberg discovered flaws in the linux Rose (X.25 PLP) layer used by amateur radio. A local user or a remote user on an X.25 network could exploit these flaws to execute arbitrary code as root. (CVE-2011-4913) Ben Hutchings discovered several flaws in the Linux Rose (X.25 PLP) layer. A local user or a remote user on an X.25 network could exploit these flaws to execute arbitrary code as root. (CVE-2011-4914). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen2020-06-01
    modified2020-06-02
    plugin id55922
    published2011-08-20
    reporterUbuntu Security Notice (C) 2011-2019 Canonical, Inc. / NASL script (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/55922
    titleUbuntu 8.04 LTS : linux vulnerabilities (USN-1189-1)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1211-1.NASL
    descriptionIt was discovered that the /proc filesystem did not correctly handle permission changes when programs executed. A local attacker could hold open files to examine details about programs running with higher privileges, potentially increasing the chances of exploiting additional vulnerabilities. (CVE-2011-1020) Dan Rosenberg discovered that the X.25 Rose network stack did not correctly handle certain fields. If a system was running with Rose enabled, a remote attacker could send specially crafted traffic to gain root privileges. (CVE-2011-1493) Vasiliy Kulikov and Dan Rosenberg discovered that ecryptfs did not correctly check the origin of mount points. A local attacker could exploit this to trick the system into unmounting arbitrary mount points, leading to a denial of service. (CVE-2011-1833) It was discovered that Bluetooth l2cap and rfcomm did not correctly initialize structures. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy. (CVE-2011-2492) It was discovered that GFS2 did not correctly check block sizes. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2689) Fernando Gont discovered that the IPv6 stack used predictable fragment identification numbers. A remote attacker could exploit this to exhaust network resources, leading to a denial of service. (CVE-2011-2699) The performance counter subsystem did not correctly handle certain counters. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2918) A flaw was found in the Linux kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id56256
    published2011-09-22
    reporterUbuntu Security Notice (C) 2011-2019 Canonical, Inc. / NASL script (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/56256
    titleUbuntu 11.04 : linux vulnerabilities (USN-1211-1)
  • NASL familySuSE Local Security Checks
    NASL idSUSE_11_3_KERNEL-110726.NASL
    descriptionThe openSUSE 11.3 kernel was updated to 2.6.34.10 to fix various bugs and security issues. Following security issues have been fixed: CVE-2011-2495: The /proc/PID/io interface could be used by local attackers to gain information on other processes like number of password characters typed or similar. CVE-2011-2484: The add_del_listener function in kernel/taskstats.c in the Linux kernel did not prevent multiple registrations of exit handlers, which allowed local users to cause a denial of service (memory and CPU consumption), and bypass the OOM Killer, via a crafted application. CVE-2011-2491: A local unprivileged user able to access a NFS filesystem could use file locking to deadlock parts of an nfs server under some circumstance. CVE-2011-2496: The normal mmap paths all avoid creating a mapping where the pgoff inside the mapping could wrap around due to overflow. However, an expanding mremap() can take such a non-wrapping mapping and make it bigger and cause a wrapping condition. CVE-2011-1017,CVE-2011-2182: The code for evaluating LDM partitions (in fs/partitions/ldm.c) contained bugs that could crash the kernel for certain corrupted LDM partitions. CVE-2011-1479: A regression in inotify fix for a memory leak could lead to a double free corruption which could crash the system. CVE-2011-1593: Multiple integer overflows in the next_pidmap function in kernel/pid.c in the Linux kernel allowed local users to cause a denial of service (system crash) via a crafted (1) getdents or (2) readdir system call. CVE-2011-1020: The proc filesystem implementation in the Linux kernel did not restrict access to the /proc directory tree of a process after this process performs an exec of a setuid program, which allowed local users to obtain sensitive information or cause a denial of service via open, lseek, read, and write system calls. CVE-2011-1585: When using a setuid root mount.cifs, local users could hijack password protected mounted CIFS shares of other local users. CVE-2011-1160: Kernel information via the TPM devices could by used by local attackers to read kernel memory. CVE-2011-1577: The Linux kernel automatically evaluated partition tables of storage devices. The code for evaluating EFI GUID partitions (in fs/partitions/efi.c) contained a bug that causes a kernel oops on certain corrupted GUID partition tables, which might be used by local attackers to crash the kernel or potentially execute code. CVE-2011-1180: In the IrDA module, length fields provided by a peer for names and attributes may be longer than the destination array sizes and were not checked, this allowed local attackers (close to the irda port) to potentially corrupt memory. CVE-2011-1016: The Radeon GPU drivers in the Linux kernel did not properly validate data related to the AA resolve registers, which allowed local users to write to arbitrary memory locations associated with (1) Video RAM (aka VRAM) or (2) the Graphics Translation Table (GTT) via crafted values. CVE-2011-1013: A signedness issue in the drm ioctl handling could be used by local attackers to potentially overflow kernel buffers and execute code.
    last seen2020-06-01
    modified2020-06-02
    plugin id75555
    published2014-06-13
    reporterThis script is Copyright (C) 2014-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/75555
    titleopenSUSE Security Update : kernel (openSUSE-SU-2011:0861-1)
  • NASL familyOracle Linux Local Security Checks
    NASL idORACLELINUX_ELSA-2011-2037.NASL
    descriptionThe remote Oracle Linux host is missing a security update for the Unbreakable Enterprise kernel package(s).
    last seen2020-06-01
    modified2020-06-02
    plugin id68425
    published2013-07-12
    reporterThis script is Copyright (C) 2013-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/68425
    titleOracle Linux 5 / 6 : Unbreakable Enterprise kernel (ELSA-2011-2037)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1201-1.NASL
    descriptionIt was discovered that the /proc filesystem did not correctly handle permission changes when programs executed. A local attacker could hold open files to examine details about programs running with higher privileges, potentially increasing the chances of exploiting additional vulnerabilities. (CVE-2011-1020) Dan Rosenberg discovered that the X.25 Rose network stack did not correctly handle certain fields. If a system was running with Rose enabled, a remote attacker could send specially crafted traffic to gain root privileges. (CVE-2011-1493) Dan Rosenberg discovered that the DCCP stack did not correctly handle certain packet structures. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1770) Vasiliy Kulikov discovered that taskstats listeners were not correctly handled. A local attacker could exploit this to exhaust memory and CPU resources, leading to a denial of service. (CVE-2011-2484) It was discovered that Bluetooth l2cap and rfcomm did not correctly initialize structures. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy. (CVE-2011-2492) A flaw was found in the Linux kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id56189
    published2011-09-14
    reporterUbuntu Security Notice (C) 2011-2019 Canonical, Inc. / NASL script (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/56189
    titleUbuntu 10.10 : linux vulnerabilities (USN-1201-1)
  • NASL familyRed Hat Local Security Checks
    NASL idREDHAT-RHSA-2011-1530.NASL
    descriptionUpdated kernel packages that fix multiple security issues, address several hundred bugs and add numerous enhancements are now available as part of the ongoing support and maintenance of Red Hat Enterprise Linux version 6. This is the second regular update. The Red Hat Security Response Team has rated this update as having moderate security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The kernel packages contain the Linux kernel, the core of any Linux operating system. This update fixes the following security issues : * The proc file system could allow a local, unprivileged user to obtain sensitive information or possibly cause integrity issues. (CVE-2011-1020, Moderate) * Non-member VLAN (virtual LAN) packet handling for interfaces in promiscuous mode and also using the be2net driver could allow an attacker on the local network to cause a denial of service. (CVE-2011-3347, Moderate) * A flaw was found in the Linux kernel in the way splitting two extents in ext4_ext_convert_to_initialized() worked. A local, unprivileged user with access to mount and unmount ext4 file systems could use this flaw to cause a denial of service. (CVE-2011-3638, Moderate) * A NULL pointer dereference flaw was found in the way the Linux kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id57012
    published2011-12-06
    reporterThis script is Copyright (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/57012
    titleRHEL 6 : kernel (RHSA-2011:1530)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1216-1.NASL
    descriptionDan Rosenberg discovered that multiple terminal ioctls did not correctly initialize structure memory. A local attacker could exploit this to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4076, CVE-2010-4077) Alex Shi and Eric Dumazet discovered that the network stack did not correctly handle packet backlogs. A remote attacker could exploit this by sending a large amount of network traffic to cause the system to run out of memory, leading to a denial of service. (CVE-2010-4251, CVE-2010-4805) It was discovered that the /proc filesystem did not correctly handle permission changes when programs executed. A local attacker could hold open files to examine details about programs running with higher privileges, potentially increasing the chances of exploiting additional vulnerabilities. (CVE-2011-1020) Dan Rosenberg discovered that the X.25 Rose network stack did not correctly handle certain fields. If a system was running with Rose enabled, a remote attacker could send specially crafted traffic to gain root privileges. (CVE-2011-1493) Timo Warns discovered that the GUID partition parsing routines did not correctly validate certain structures. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1577) It was discovered that CIFS incorrectly handled authentication. When a user had a CIFS share mounted that required authentication, a local user could mount the same share without knowing the correct password. (CVE-2011-1585) It was discovered that the GRE protocol incorrectly handled netns initialization. A remote attacker could send a packet while the ip_gre module was loading, and crash the system, leading to a denial of service. (CVE-2011-1767) It was discovered that the IP/IP protocol incorrectly handled netns initialization. A remote attacker could send a packet while the ipip module was loading, and crash the system, leading to a denial of service. (CVE-2011-1768) Ben Hutchings reported a flaw in the kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id56305
    published2011-09-27
    reporterUbuntu Security Notice (C) 2011-2019 Canonical, Inc. / NASL script (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/56305
    titleUbuntu 10.04 LTS : linux-ec2 vulnerabilities (USN-1216-1)

Packetstorm

Redhat

rpms
  • kernel-rt-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-debug-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-debug-debuginfo-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-debug-devel-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-debuginfo-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-debuginfo-common-x86_64-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-devel-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-doc-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-firmware-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-trace-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-trace-debuginfo-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-trace-devel-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-vanilla-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-vanilla-debuginfo-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-vanilla-devel-0:2.6.33.9-rt31.75.el6rt
  • kernel-0:2.6.32-220.el6
  • kernel-bootwrapper-0:2.6.32-220.el6
  • kernel-debug-0:2.6.32-220.el6
  • kernel-debug-debuginfo-0:2.6.32-220.el6
  • kernel-debug-devel-0:2.6.32-220.el6
  • kernel-debuginfo-0:2.6.32-220.el6
  • kernel-debuginfo-common-i686-0:2.6.32-220.el6
  • kernel-debuginfo-common-ppc64-0:2.6.32-220.el6
  • kernel-debuginfo-common-s390x-0:2.6.32-220.el6
  • kernel-debuginfo-common-x86_64-0:2.6.32-220.el6
  • kernel-devel-0:2.6.32-220.el6
  • kernel-doc-0:2.6.32-220.el6
  • kernel-firmware-0:2.6.32-220.el6
  • kernel-headers-0:2.6.32-220.el6
  • kernel-kdump-0:2.6.32-220.el6
  • kernel-kdump-debuginfo-0:2.6.32-220.el6
  • kernel-kdump-devel-0:2.6.32-220.el6
  • perf-0:2.6.32-220.el6
  • perf-debuginfo-0:2.6.32-220.el6
  • python-perf-0:2.6.32-220.el6
  • kernel-0:2.6.18-274.17.1.el5
  • kernel-PAE-0:2.6.18-274.17.1.el5
  • kernel-PAE-debuginfo-0:2.6.18-274.17.1.el5
  • kernel-PAE-devel-0:2.6.18-274.17.1.el5
  • kernel-debug-0:2.6.18-274.17.1.el5
  • kernel-debug-debuginfo-0:2.6.18-274.17.1.el5
  • kernel-debug-devel-0:2.6.18-274.17.1.el5
  • kernel-debuginfo-0:2.6.18-274.17.1.el5
  • kernel-debuginfo-common-0:2.6.18-274.17.1.el5
  • kernel-devel-0:2.6.18-274.17.1.el5
  • kernel-doc-0:2.6.18-274.17.1.el5
  • kernel-headers-0:2.6.18-274.17.1.el5
  • kernel-kdump-0:2.6.18-274.17.1.el5
  • kernel-kdump-debuginfo-0:2.6.18-274.17.1.el5
  • kernel-kdump-devel-0:2.6.18-274.17.1.el5
  • kernel-xen-0:2.6.18-274.17.1.el5
  • kernel-xen-debuginfo-0:2.6.18-274.17.1.el5
  • kernel-xen-devel-0:2.6.18-274.17.1.el5
  • kernel-0:2.6.32-131.25.1.el6
  • kernel-bootwrapper-0:2.6.32-131.25.1.el6
  • kernel-debug-0:2.6.32-131.25.1.el6
  • kernel-debug-debuginfo-0:2.6.32-131.25.1.el6
  • kernel-debug-devel-0:2.6.32-131.25.1.el6
  • kernel-debuginfo-0:2.6.32-131.25.1.el6
  • kernel-debuginfo-common-i686-0:2.6.32-131.25.1.el6
  • kernel-debuginfo-common-ppc64-0:2.6.32-131.25.1.el6
  • kernel-debuginfo-common-s390x-0:2.6.32-131.25.1.el6
  • kernel-debuginfo-common-x86_64-0:2.6.32-131.25.1.el6
  • kernel-devel-0:2.6.32-131.25.1.el6
  • kernel-doc-0:2.6.32-131.25.1.el6
  • kernel-firmware-0:2.6.32-131.25.1.el6
  • kernel-headers-0:2.6.32-131.25.1.el6
  • kernel-kdump-0:2.6.32-131.25.1.el6
  • kernel-kdump-debuginfo-0:2.6.32-131.25.1.el6
  • kernel-kdump-devel-0:2.6.32-131.25.1.el6
  • perf-0:2.6.32-131.25.1.el6
  • perf-debuginfo-0:2.6.32-131.25.1.el6