Vulnerabilities > CVE-2021-41129 - Improper Authentication vulnerability in Pterodactyl Panel

047910
CVSS 6.8 - MEDIUM
Attack vector
NETWORK
Attack complexity
MEDIUM
Privileges required
NONE
Confidentiality impact
PARTIAL
Integrity impact
PARTIAL
Availability impact
PARTIAL

Summary

Pterodactyl is an open-source game server management panel built with PHP 7, React, and Go. A malicious user can modify the contents of a `confirmation_token` input during the two-factor authentication process to reference a cache value not associated with the login attempt. In rare cases this can allow a malicious actor to authenticate as a random user in the Panel. The malicious user must target an account with two-factor authentication enabled, and then must provide a correct two-factor authentication token before being authenticated as that user. Due to a validation flaw in the logic handling user authentication during the two-factor authentication process a malicious user can trick the system into loading credentials for an arbitrary user by modifying the token sent to the server. This authentication flaw is present in the `LoginCheckpointController@__invoke` method which handles two-factor authentication for a user. This controller looks for a request input parameter called `confirmation_token` which is expected to be a 64 character random alpha-numeric string that references a value within the Panel's cache containing a `user_id` value. This value is then used to fetch the user that attempted to login, and lookup their two-factor authentication token. Due to the design of this system, any element in the cache that contains only digits could be referenced by a malicious user, and whatever value is stored at that position would be used as the `user_id`. There are a few different areas of the Panel that store values into the cache that are integers, and a user who determines what those cache keys are could pass one of those keys which would cause this code pathway to reference an arbitrary user. At its heart this is a high-risk login bypass vulnerability. However, there are a few additional conditions that must be met in order for this to be successfully executed, notably: 1.) The account referenced by the malicious cache key must have two-factor authentication enabled. An account without two-factor authentication would cause an exception to be triggered by the authentication logic, thusly exiting this authentication flow. 2.) Even if the malicious user is able to reference a valid cache key that references a valid user account with two-factor authentication, they must provide a valid two-factor authentication token. However, due to the design of this endpoint once a valid user account is found with two-factor authentication enabled there is no rate-limiting present, thusly allowing an attacker to brute force combinations until successful. This leads to a third condition that must be met: 3.) For the duration of this attack sequence the cache key being referenced must continue to exist with a valid `user_id` value. Depending on the specific key being used for this attack, this value may disappear quickly, or be changed by other random user interactions on the Panel, outside the control of the attacker. In order to mitigate this vulnerability the underlying authentication logic was changed to use an encrypted session store that the user is therefore unable to control the value of. This completely removed the use of a user-controlled value being used. In addition, the code was audited to ensure this type of vulnerability is not present elsewhere.

Common Weakness Enumeration (CWE)

Common Attack Pattern Enumeration and Classification (CAPEC)

  • Authentication Abuse
    An attacker obtains unauthorized access to an application, service or device either through knowledge of the inherent weaknesses of an authentication mechanism, or by exploiting a flaw in the authentication scheme's implementation. In such an attack an authentication mechanism is functioning but a carefully controlled sequence of events causes the mechanism to grant access to the attacker. This attack may exploit assumptions made by the target's authentication procedures, such as assumptions regarding trust relationships or assumptions regarding the generation of secret values. This attack differs from Authentication Bypass attacks in that Authentication Abuse allows the attacker to be certified as a valid user through illegitimate means, while Authentication Bypass allows the user to access protected material without ever being certified as an authenticated user. This attack does not rely on prior sessions established by successfully authenticating users, as relied upon for the "Exploitation of Session Variables, Resource IDs and other Trusted Credentials" attack patterns.
  • Exploiting Trust in Client (aka Make the Client Invisible)
    An attack of this type exploits a programs' vulnerabilities in client/server communication channel authentication and data integrity. It leverages the implicit trust a server places in the client, or more importantly, that which the server believes is the client. An attacker executes this type of attack by placing themselves in the communication channel between client and server such that communication directly to the server is possible where the server believes it is communicating only with a valid client. There are numerous variations of this type of attack.
  • Utilizing REST's Trust in the System Resource to Register Man in the Middle
    This attack utilizes a REST(REpresentational State Transfer)-style applications' trust in the system resources and environment to place man in the middle once SSL is terminated. Rest applications premise is that they leverage existing infrastructure to deliver web services functionality. An example of this is a Rest application that uses HTTP Get methods and receives a HTTP response with an XML document. These Rest style web services are deployed on existing infrastructure such as Apache and IIS web servers with no SOAP stack required. Unfortunately from a security standpoint, there frequently is no interoperable identity security mechanism deployed, so Rest developers often fall back to SSL to deliver security. In large data centers, SSL is typically terminated at the edge of the network - at the firewall, load balancer, or router. Once the SSL is terminated the HTTP request is in the clear (unless developers have hashed or encrypted the values, but this is rare). The attacker can utilize a sniffer such as Wireshark to snapshot the credentials, such as username and password that are passed in the clear once SSL is terminated. Once the attacker gathers these credentials, they can submit requests to the web service provider just as authorized user do. There is not typically an authentication on the client side, beyond what is passed in the request itself so once this is compromised, then this is generally sufficient to compromise the service's authentication scheme.
  • Man in the Middle Attack
    This type of attack targets the communication between two components (typically client and server). The attacker places himself in the communication channel between the two components. Whenever one component attempts to communicate with the other (data flow, authentication challenges, etc.), the data first goes to the attacker, who has the opportunity to observe or alter it, and it is then passed on to the other component as if it was never intercepted. This interposition is transparent leaving the two compromised components unaware of the potential corruption or leakage of their communications. The potential for Man-in-the-Middle attacks yields an implicit lack of trust in communication or identify between two components.