Vulnerabilities > CVE-2019-6540 - Cleartext Transmission of Sensitive Information vulnerability in Medtronic products

047910
CVSS 3.3 - LOW
Attack vector
ADJACENT_NETWORK
Attack complexity
LOW
Privileges required
NONE
Confidentiality impact
PARTIAL
Integrity impact
NONE
Availability impact
NONE
low complexity
medtronic
CWE-319

Summary

The Conexus telemetry protocol utilized within Medtronic MyCareLink Monitor versions 24950 and 24952, CareLink Monitor version 2490C, CareLink 2090 Programmer, Amplia CRT-D, Claria CRT-D, Compia CRT-D, Concerto CRT-D, Concerto II CRT-D, Consulta CRT-D, Evera ICD, Maximo II CRT-D and ICD, Mirro ICD, Nayamed ND ICD, Primo ICD, Protecta ICD and CRT-D, Secura ICD, Virtuoso ICD, Virtuoso II ICD, Visia AF ICD, and Viva CRT-D does not implement encryption. An attacker with adjacent short-range access to a target product can listen to communications, including the transmission of sensitive data.

Vulnerable Configurations

Part Description Count
OS
Medtronic
23
Hardware
Medtronic
23

Common Attack Pattern Enumeration and Classification (CAPEC)

  • Session Sidejacking
    Session sidejacking takes advantage of an unencrypted communication channel between a victim and target system. The attacker sniffs traffic on a network looking for session tokens in unencrypted traffic. Once a session token is captured, the attacker performs malicious actions by using the stolen token with the targeted application to impersonate the victim. This attack is a specific method of session hijacking, which is exploiting a valid session token to gain unauthorized access to a target system or information. Other methods to perform a session hijacking are session fixation, cross-site scripting, or compromising a user or server machine and stealing the session token.
  • Footprinting
    An attacker engages in probing and exploration activity to identify constituents and properties of the target. Footprinting is a general term to describe a variety of information gathering techniques, often used by attackers in preparation for some attack. It consists of using tools to learn as much as possible about the composition, configuration, and security mechanisms of the targeted application, system or network. Information that might be collected during a footprinting effort could include open ports, applications and their versions, network topology, and similar information. While footprinting is not intended to be damaging (although certain activities, such as network scans, can sometimes cause disruptions to vulnerable applications inadvertently) it may often pave the way for more damaging attacks.
  • Harvesting Usernames or UserIDs via Application API Event Monitoring
    An attacker hosts an event within an application framework and then monitors the data exchanged during the course of the event for the purpose of harvesting any important data leaked during the transactions. One example could be harvesting lists of usernames or userIDs for the purpose of sending spam messages to those users. One example of this type of attack involves the attacker creating an event within the sub-application. Assume the attacker hosts a "virtual sale" of rare items. As other users enter the event, the attacker records via MITM proxy the user_ids and usernames of everyone who attends. The attacker would then be able to spam those users within the application using an automated script.
  • Signature Spoofing by Mixing Signed and Unsigned Content
    An attacker exploits the underlying complexity of a data structure that allows for both signed and unsigned content, to cause unsigned data to be processed as though it were signed data.
  • Passively Sniff and Capture Application Code Bound for Authorized Client
    Attackers can capture application code bound for the client and can use it, as-is or through reverse-engineering, to glean sensitive information or exploit the trust relationship between the client and server. Such code may belong to a dynamic update to the client, a patch being applied to a client component or any such interaction where the client is authorized to communicate with the server.

The Hacker News

idTHN:22BD1C3E7F7F5638B94295741D887160
last seen2019-03-22
modified2019-03-22
published2019-03-22
reporterThe Hacker News
sourcehttps://thehackernews.com/2019/03/hacking-implantable-defibrillators.html
titleMedtronic's Implantable Defibrillators Vulnerable to Life-Threatening Hacks