Vulnerabilities > CVE-2019-3681 - External Control of File Name OR Path vulnerability in Opensuse OSC

047910
CVSS 6.4 - MEDIUM
Attack vector
UNKNOWN
Attack complexity
UNKNOWN
Privileges required
UNKNOWN
Confidentiality impact
UNKNOWN
Integrity impact
UNKNOWN
Availability impact
UNKNOWN

Summary

A External Control of File Name or Path vulnerability in osc of SUSE Linux Enterprise Module for Development Tools 15, SUSE Linux Enterprise Software Development Kit 12-SP5, SUSE Linux Enterprise Software Development Kit 12-SP4; openSUSE Leap 15.1, openSUSE Factory allowed remote attackers that can change downloaded packages to overwrite arbitrary files. This issue affects: SUSE Linux Enterprise Module for Development Tools 15 osc versions prior to 0.169.1-3.20.1. SUSE Linux Enterprise Software Development Kit 12-SP5 osc versions prior to 0.162.1-15.9.1. SUSE Linux Enterprise Software Development Kit 12-SP4 osc versions prior to 0.162.1-15.9.1. openSUSE Leap 15.1 osc versions prior to 0.169.1-lp151.2.15.1. openSUSE Factory osc versions prior to 0.169.0 .

Common Weakness Enumeration (CWE)

Common Attack Pattern Enumeration and Classification (CAPEC)

  • Subverting Environment Variable Values
    The attacker directly or indirectly modifies environment variables used by or controlling the target software. The attacker's goal is to cause the target software to deviate from its expected operation in a manner that benefits the attacker.
  • Leverage Alternate Encoding
    This attack leverages the possibility to encode potentially harmful input and submit it to applications not expecting or effective at validating this encoding standard making input filtering difficult.
  • Using Slashes and URL Encoding Combined to Bypass Validation Logic
    This attack targets the encoding of the URL combined with the encoding of the slash characters. An attacker can take advantage of the multiple way of encoding an URL and abuse the interpretation of the URL. An URL may contain special character that need special syntax handling in order to be interpreted. Special characters are represented using a percentage character followed by two digits representing the octet code of the original character (%HEX-CODE). For instance US-ASCII space character would be represented with %20. This is often referred as escaped ending or percent-encoding. Since the server decodes the URL from the requests, it may restrict the access to some URL paths by validating and filtering out the URL requests it received. An attacker will try to craft an URL with a sequence of special characters which once interpreted by the server will be equivalent to a forbidden URL. It can be difficult to protect against this attack since the URL can contain other format of encoding such as UTF-8 encoding, Unicode-encoding, etc.
  • URL Encoding
    This attack targets the encoding of the URL. An attacker can take advantage of the multiple way of encoding an URL and abuse the interpretation of the URL. An URL may contain special character that need special syntax handling in order to be interpreted. Special characters are represented using a percentage character followed by two digits representing the octet code of the original character (%HEX-CODE). For instance US-ASCII space character would be represented with %20. This is often referred as escaped ending or percent-encoding. Since the server decodes the URL from the requests, it may restrict the access to some URL paths by validating and filtering out the URL requests it received. An attacker will try to craft an URL with a sequence of special characters which once interpreted by the server will be equivalent to a forbidden URL. It can be difficult to protect against this attack since the URL can contain other format of encoding such as UTF-8 encoding, Unicode-encoding, etc. The attacker could also subvert the meaning of the URL string request by encoding the data being sent to the server through a GET request. For instance an attacker may subvert the meaning of parameters used in a SQL request and sent through the URL string (See Example section).
  • Manipulating Input to File System Calls
    An attacker manipulates inputs to the target software which the target software passes to file system calls in the OS. The goal is to gain access to, and perhaps modify, areas of the file system that the target software did not intend to be accessible.