Vulnerabilities > CVE-2017-6957 - Improper Restriction of Operations within the Bounds of a Memory Buffer vulnerability in Broadcom Bcm4339 SOC Firmware 6.37.34.40

047910
CVSS 6.8 - MEDIUM
Attack vector
NETWORK
Attack complexity
MEDIUM
Privileges required
NONE
Confidentiality impact
PARTIAL
Integrity impact
PARTIAL
Availability impact
PARTIAL

Summary

Stack-based buffer overflow in the firmware in Broadcom Wi-Fi HardMAC SoC chips, when the firmware supports CCKM Fast and Secure Roaming and the feature is enabled in RAM, allows remote attackers to execute arbitrary code via a crafted reassociation response frame with a Cisco IE (156).

Vulnerable Configurations

Part Description Count
OS
Broadcom
1
Hardware
Broadcom
1

Common Attack Pattern Enumeration and Classification (CAPEC)

  • Buffer Overflow via Environment Variables
    This attack pattern involves causing a buffer overflow through manipulation of environment variables. Once the attacker finds that they can modify an environment variable, they may try to overflow associated buffers. This attack leverages implicit trust often placed in environment variables.
  • Overflow Buffers
    Buffer Overflow attacks target improper or missing bounds checking on buffer operations, typically triggered by input injected by an attacker. As a consequence, an attacker is able to write past the boundaries of allocated buffer regions in memory, causing a program crash or potentially redirection of execution as per the attackers' choice.
  • Client-side Injection-induced Buffer Overflow
    This type of attack exploits a buffer overflow vulnerability in targeted client software through injection of malicious content from a custom-built hostile service.
  • Filter Failure through Buffer Overflow
    In this attack, the idea is to cause an active filter to fail by causing an oversized transaction. An attacker may try to feed overly long input strings to the program in an attempt to overwhelm the filter (by causing a buffer overflow) and hoping that the filter does not fail securely (i.e. the user input is let into the system unfiltered).
  • MIME Conversion
    An attacker exploits a weakness in the MIME conversion routine to cause a buffer overflow and gain control over the mail server machine. The MIME system is designed to allow various different information formats to be interpreted and sent via e-mail. Attack points exist when data are converted to MIME compatible format and back.

Seebug

bulletinFamilyexploit
descriptionBroadcom produces Wi-Fi HardMAC SoCs which are used to handle the PHY and MAC layer processing. These chips are present in both mobile devices and Wi-Fi routers, and are capable of handling many Wi-Fi related events without delegating to the host OS. In order to allow fast roaming between access points in a wireless network, the Broadcom firmware supports Cisco's "CCKM Fast and Secure Roaming" feature, allowing a client to roam to a new AP quickly. Note this is a different implementation to IEEE 802.11r-2008 FT. When a client decides to roam to a different AP in a CCKM network, they first send a reassociation request to the AP containing a Cisco-specific information element. This AP responds by sending a reassociation response frame also containing a Cisco-specific IE (156). This IE is then parsed by the firmware in order to make sure it is valid, before completing the reassociation process. A packet capture containing this process can be found here: https://mrncciew.files.wordpress.com/2014/09/7921-cckm-roaming-to-lap1.zip On the BCM4339 SoC with firmware version 6.37.34.40 the reassociation response in handled by ROM function 0x78D04. This function first retrieves the Cisco-specific IE. Then, it proceeds to check that the IE is valid, by calling function 0x794F8. This function performs four validations: 1. Bytes [2:4] of the IE match Cisco's OUI (00-40-96) 2. Byte 5 of the IE is zero 3. (IE[20] | (IE[21] << 8)) + 30 == IE[1] + 2 (where IE[1] is the IE's length field) 4. Bytes [6:9] of the IE match bytes [14:17] of the IE in the reassociation request (see packet capture) If the IE passes the checks described above, the function proceeds to call ROM function 0x79390. This function unpacks data from the IE, and has approximately the following high-level logic: ``` 1. void function_79390(void* unk, char* ie, char* buf) { 2. char buffer[128]; 3. memcpy(buffer, ..., 6); buffer += 6; 4. ... 5. memcpy(buffer, ie + 6, 4); buffer += 4; 6. *buffer = ie[10]; buffer += 1; 7. *buffer = ie[11]; buffer += 1; 8. memcpy(buffer, ie + 12, 8); buffer += 8; 9. memcpy(buffer, ie + 20, 2); buffer += 2; 10. memcpy(buffer, ie + 30, ie[20] | (ie[21] << 8)); 11. ... 12. } ``` As can be seen above, line 10 performs a memcpy into the stack-allocated buffer ("buffer"), using the value "ie[20] | (ie[21] << 8)" as the length field. However, as we've previously seen, the only validation performed on these two bytes is that: (ie[20] | (ie[21] << 8)) + 30 == ie[1] + 2 This means an attacker could craft a reassociation response frame containing a Cisco IE (156) as follows: 1. IE[2:4] = 0x00 0x40 0x96 2. IE[5] = 0 3. IE[20] | (IE[21] << 8) = 227 4. IE[1] = 255 5. IE[6:9] = REQIE[14:17] This IE satisfies all the constraints validated by function 0x794F8. However, when the IE is the passed into function 0x79390, it will cause memcpy operation at line 10 in the code above to exceed the buffer's bounds, trigger a stack buffer overflow with attacker controlled data. It should be noted that there is no stack cookie mitigation in the BCM4339 firmware, meaning an attacker would not require an additional vulnerability primitive in order to gain code execution using this vulnerability. I've verified this vulnerability statically on the BCM4339 chip with firmware version 6.37.34.40 (as present on the Nexus 5). However, I believe this vulnerability's scope includes a wider range of Broadcom SoCs and versions.
idSSV:92838
last seen2017-11-19
modified2017-03-28
published2017-03-28
reporterRoot
titleBroadcom: Stack buffer overflow when parsing CCKM reassociation response(CVE-2017-6957)