Vulnerabilities > CVE-2017-16532 - NULL Pointer Dereference vulnerability in multiple products

047910
CVSS 6.6 - MEDIUM
Attack vector
PHYSICAL
Attack complexity
LOW
Privileges required
LOW
Confidentiality impact
HIGH
Integrity impact
HIGH
Availability impact
HIGH
low complexity
linux
debian
canonical
CWE-476
nessus

Summary

The get_endpoints function in drivers/usb/misc/usbtest.c in the Linux kernel through 4.13.11 allows local users to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact via a crafted USB device.

Vulnerable Configurations

Part Description Count
OS
Linux
2672
OS
Debian
1
OS
Canonical
3

Common Weakness Enumeration (CWE)

Nessus

  • NASL familyPhotonOS Local Security Checks
    NASL idPHOTONOS_PHSA-2017-0049.NASL
    descriptionAn update of [linux] packages forhotonOS has been released.
    last seen2019-02-08
    modified2019-02-07
    plugin id111898
    published2018-08-17
    reporterTenable
    sourcehttps://www.tenable.com/plugins/index.php?view=single&id=111898
    titlePhoton OS 1.0: Linux PHSA-2017-0049 (deprecated)
    code
    #
    # (C) Tenable Network Security, Inc.
    #
    # @DEPRECATED@
    #
    # Disabled on 2/7/2019
    #
    
    # The descriptive text and package checks in this plugin were
    # extracted from VMware Security Advisory PHSA-2017-0049. The text
    # itself is copyright (C) VMware, Inc.
    
    include("compat.inc");
    
    if (description)
    {
      script_id(111898);
      script_version("1.2");
      script_cvs_date("Date: 2019/02/07 18:59:50");
    
      script_cve_id("CVE-2017-16532");
    
      script_name(english:"Photon OS 1.0: Linux PHSA-2017-0049 (deprecated)");
      script_summary(english:"Checks the rpm output for the updated packages.");
    
      script_set_attribute(attribute:"synopsis", value:
    "This plugin has been deprecated.");
      script_set_attribute(attribute:"description", value:
    "An update of [linux] packages forhotonOS has been released.");
      # https://github.com/vmware/photon/wiki/Security-Updates-90
      script_set_attribute(attribute:"see_also", value:"http://www.nessus.org/u?bdfb09a3");
      script_set_attribute(attribute:"solution", value:"n/a.");
      script_set_cvss_base_vector("CVSS2#AV:L/AC:L/Au:N/C:C/I:C/A:C");
      script_set_cvss3_base_vector("CVSS:3.0/AV:P/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H");
      script_set_attribute(attribute:"cvss_score_source", value:"CVE-2017-16532");
    
      script_set_attribute(attribute:"patch_publication_date", value:"2017/12/01");
      script_set_attribute(attribute:"plugin_publication_date", value:"2018/08/17");
    
      script_set_attribute(attribute:"plugin_type", value:"local");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:vmware:photonos:linux");
      script_set_attribute(attribute:"cpe", value:"cpe:/o:vmware:photonos:1.0");
      script_end_attributes();
    
      script_category(ACT_GATHER_INFO);
      script_family(english:"PhotonOS Local Security Checks");
    
      script_copyright(english:"This script is Copyright (C) 2018-2019 and is owned by Tenable, Inc. or an Affiliate thereof.");
    
      script_dependencies("ssh_get_info.nasl");
      script_require_keys("Host/local_checks_enabled", "Host/PhotonOS/release", "Host/PhotonOS/rpm-list");
    
      exit(0);
    }
    
    exit(0, "This plugin has been deprecated.");
    
    include("audit.inc");
    include("global_settings.inc");
    include("rpm.inc");
    
    if (!get_kb_item("Host/local_checks_enabled")) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED);
    
    release = get_kb_item("Host/PhotonOS/release");
    if (isnull(release) || release !~ "^VMware Photon") audit(AUDIT_OS_NOT, "PhotonOS");
    if (release !~ "^VMware Photon (?:Linux|OS) 1\.0(\D|$)") audit(AUDIT_OS_NOT, "PhotonOS 1.0");
    
    if (!get_kb_item("Host/PhotonOS/rpm-list")) audit(AUDIT_PACKAGE_LIST_MISSING);
    
    cpu = get_kb_item("Host/cpu");
    if (isnull(cpu)) audit(AUDIT_UNKNOWN_ARCH);
    if ("x86_64" >!< cpu && cpu !~ "^i[3-6]86$") audit(AUDIT_LOCAL_CHECKS_NOT_IMPLEMENTED, "PhotonOS", cpu);
    
    flag = 0;
    
    pkgs = [
      "linux-4.4.99-1.ph1",
      "linux-api-headers-4.4.99-1.ph1",
      "linux-debuginfo-4.4.99-1.ph1",
      "linux-dev-4.4.99-1.ph1",
      "linux-docs-4.4.99-1.ph1",
      "linux-drivers-gpu-4.4.99-1.ph1",
      "linux-esx-4.4.99-1.ph1",
      "linux-esx-debuginfo-4.4.99-1.ph1",
      "linux-esx-devel-4.4.99-1.ph1",
      "linux-esx-docs-4.4.99-1.ph1",
      "linux-oprofile-4.4.99-1.ph1",
      "linux-sound-4.4.99-1.ph1",
      "linux-tools-4.4.99-1.ph1"
    ];
    
    foreach (pkg in pkgs)
      if (rpm_check(release:"PhotonOS-1.0", reference:pkg)) flag++;
    
    if (flag)
    {
      security_report_v4(
        port       : 0,
        severity   : SECURITY_HOLE,
        extra      : rpm_report_get()
      );
      exit(0);
    }
    else
    {
      tested = pkg_tests_get();
      if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested);
      else audit(AUDIT_PACKAGE_NOT_INSTALLED, "linux");
    }
    
  • NASL familyFedora Local Security Checks
    NASL idFEDORA_2017-31D7720D7E.NASL
    descriptionThe 4.13.12 update contains a number of important fixes across the tree. It contains security fixes for CVE-2017-16532 and CVE-2017-16538. Note that Tenable Network Security has extracted the preceding description block directly from the Fedora update system website. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen2020-06-05
    modified2017-11-14
    plugin id104536
    published2017-11-14
    reporterThis script is Copyright (C) 2017-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/104536
    titleFedora 26 : kernel (2017-31d7720d7e)
    code
    #%NASL_MIN_LEVEL 80502
    #
    # (C) Tenable Network Security, Inc.
    #
    # The descriptive text and package checks in this plugin were  
    # extracted from Fedora Security Advisory FEDORA-2017-31d7720d7e.
    #
    
    include("compat.inc");
    
    if (description)
    {
      script_id(104536);
      script_version("3.6");
      script_set_attribute(attribute:"plugin_modification_date", value:"2020/06/04");
    
      script_cve_id("CVE-2017-16525", "CVE-2017-16532", "CVE-2017-16538");
      script_xref(name:"FEDORA", value:"2017-31d7720d7e");
    
      script_name(english:"Fedora 26 : kernel (2017-31d7720d7e)");
      script_summary(english:"Checks rpm output for the updated package.");
    
      script_set_attribute(
        attribute:"synopsis", 
        value:"The remote Fedora host is missing a security update."
      );
      script_set_attribute(
        attribute:"description", 
        value:
    "The 4.13.12 update contains a number of important fixes across the
    tree.
    
    It contains security fixes for CVE-2017-16532 and CVE-2017-16538.
    
    Note that Tenable Network Security has extracted the preceding
    description block directly from the Fedora update system website.
    Tenable has attempted to automatically clean and format it as much as
    possible without introducing additional issues."
      );
      script_set_attribute(
        attribute:"see_also",
        value:"https://bodhi.fedoraproject.org/updates/FEDORA-2017-31d7720d7e"
      );
      script_set_attribute(
        attribute:"solution", 
        value:"Update the affected kernel package."
      );
      script_set_cvss_base_vector("CVSS2#AV:L/AC:L/Au:N/C:C/I:C/A:C");
      script_set_cvss3_base_vector("CVSS:3.0/AV:P/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H");
    
      script_set_attribute(attribute:"plugin_type", value:"local");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:fedoraproject:fedora:kernel");
      script_set_attribute(attribute:"cpe", value:"cpe:/o:fedoraproject:fedora:26");
    
      script_set_attribute(attribute:"vuln_publication_date", value:"2017/11/04");
      script_set_attribute(attribute:"patch_publication_date", value:"2017/11/14");
      script_set_attribute(attribute:"plugin_publication_date", value:"2017/11/14");
      script_set_attribute(attribute:"generated_plugin", value:"current");
      script_end_attributes();
    
      script_category(ACT_GATHER_INFO);
      script_copyright(english:"This script is Copyright (C) 2017-2020 and is owned by Tenable, Inc. or an Affiliate thereof.");
      script_family(english:"Fedora Local Security Checks");
    
      script_dependencies("ssh_get_info.nasl", "linux_alt_patch_detect.nasl");
      script_require_keys("Host/local_checks_enabled", "Host/RedHat/release", "Host/RedHat/rpm-list");
    
      exit(0);
    }
    
    
    include("audit.inc");
    include("global_settings.inc");
    include("rpm.inc");
    include("ksplice.inc");
    
    
    if (!get_kb_item("Host/local_checks_enabled")) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED);
    release = get_kb_item("Host/RedHat/release");
    if (isnull(release) || "Fedora" >!< release) audit(AUDIT_OS_NOT, "Fedora");
    os_ver = pregmatch(pattern: "Fedora.*release ([0-9]+)", string:release);
    if (isnull(os_ver)) audit(AUDIT_UNKNOWN_APP_VER, "Fedora");
    os_ver = os_ver[1];
    if (! preg(pattern:"^26([^0-9]|$)", string:os_ver)) audit(AUDIT_OS_NOT, "Fedora 26", "Fedora " + os_ver);
    
    if (!get_kb_item("Host/RedHat/rpm-list")) audit(AUDIT_PACKAGE_LIST_MISSING);
    
    
    cpu = get_kb_item("Host/cpu");
    if (isnull(cpu)) audit(AUDIT_UNKNOWN_ARCH);
    if ("x86_64" >!< cpu && cpu !~ "^i[3-6]86$") audit(AUDIT_LOCAL_CHECKS_NOT_IMPLEMENTED, "Fedora", cpu);
    
    if (get_one_kb_item("Host/ksplice/kernel-cves"))
    {
      rm_kb_item(name:"Host/uptrack-uname-r");
      cve_list = make_list("CVE-2017-16525", "CVE-2017-16532", "CVE-2017-16538");
      if (ksplice_cves_check(cve_list))
      {
        audit(AUDIT_PATCH_INSTALLED, "KSplice hotfix for FEDORA-2017-31d7720d7e");
      }
      else
      {
        __rpm_report = ksplice_reporting_text();
      }
    }
    
    flag = 0;
    if (rpm_check(release:"FC26", reference:"kernel-4.13.12-200.fc26")) flag++;
    
    
    if (flag)
    {
      security_report_v4(
        port       : 0,
        severity   : SECURITY_HOLE,
        extra      : rpm_report_get()
      );
      exit(0);
    }
    else
    {
      tested = pkg_tests_get();
      if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested);
      else audit(AUDIT_PACKAGE_NOT_INSTALLED, "kernel");
    }
    
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-3617-2.NASL
    descriptionUSN-3617-1 fixed vulnerabilities in the Linux kernel for Ubuntu 17.10. This update provides the corresponding updates for the Linux Hardware Enablement (HWE) kernel from Ubuntu 17.10 for Ubuntu 16.04 LTS. It was discovered that a race condition leading to a use-after-free vulnerability existed in the ALSA PCM subsystem of the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-0861) It was discovered that the KVM implementation in the Linux kernel allowed passthrough of the diagnostic I/O port 0x80. An attacker in a guest VM could use this to cause a denial of service (system crash) in the host OS. (CVE-2017-1000407) It was discovered that a use-after-free vulnerability existed in the network namespaces implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-15129) Andrey Konovalov discovered that the usbtest device driver in the Linux kernel did not properly validate endpoint metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16532) Andrey Konovalov discovered that the SoundGraph iMON USB driver in the Linux kernel did not properly validate device metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16537) Andrey Konovalov discovered that the IMS Passenger Control Unit USB driver in the Linux kernel did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16645) Andrey Konovalov discovered that the DiBcom DiB0700 USB DVB driver in the Linux kernel did not properly handle detach events. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16646) Andrey Konovalov discovered that the ASIX Ethernet USB driver in the Linux kernel did not properly handle suspend and resume events. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16647) Andrey Konovalov discovered that the CDC USB Ethernet driver did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16649) Andrey Konovalov discovered that the QMI WWAN USB driver did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16650) It was discovered that the HugeTLB component of the Linux kernel did not properly handle holes in hugetlb ranges. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2017-16994) It was discovered that the netfilter component of the Linux did not properly restrict access to the connection tracking helpers list. A local attacker could use this to bypass intended access restrictions. (CVE-2017-17448) It was discovered that the netfilter passive OS fingerprinting (xt_osf) module did not properly perform access control checks. A local attacker could improperly modify the system-wide OS fingerprint list. (CVE-2017-17450) Dmitry Vyukov discovered that the KVM implementation in the Linux kernel contained an out-of-bounds read when handling memory-mapped I/O. A local attacker could use this to expose sensitive information. (CVE-2017-17741) It was discovered that the Salsa20 encryption algorithm implementations in the Linux kernel did not properly handle zero-length inputs. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-17805) It was discovered that the HMAC implementation did not validate the state of the underlying cryptographic hash algorithm. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-17806) It was discovered that the keyring implementation in the Linux kernel did not properly check permissions when a key request was performed on a tasks
    last seen2020-06-01
    modified2020-06-02
    plugin id108835
    published2018-04-04
    reporterUbuntu Security Notice (C) 2018-2020 Canonical, Inc. / NASL script (C) 2018-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/108835
    titleUbuntu 16.04 LTS : linux-hwe, linux-gcp, linux-oem vulnerabilities (USN-3617-2)
    code
    #
    # (C) Tenable Network Security, Inc.
    #
    # The descriptive text and package checks in this plugin were
    # extracted from Ubuntu Security Notice USN-3617-2. The text 
    # itself is copyright (C) Canonical, Inc. See 
    # <http://www.ubuntu.com/usn/>. Ubuntu(R) is a registered 
    # trademark of Canonical, Inc.
    #
    
    include("compat.inc");
    
    if (description)
    {
      script_id(108835);
      script_version("1.6");
      script_cvs_date("Date: 2020/01/23");
    
      script_cve_id("CVE-2017-0861", "CVE-2017-1000407", "CVE-2017-15129", "CVE-2017-16532", "CVE-2017-16537", "CVE-2017-16645", "CVE-2017-16646", "CVE-2017-16647", "CVE-2017-16649", "CVE-2017-16650", "CVE-2017-16994", "CVE-2017-17448", "CVE-2017-17450", "CVE-2017-17741", "CVE-2017-17805", "CVE-2017-17806", "CVE-2017-17807", "CVE-2017-18204", "CVE-2018-1000026", "CVE-2018-5332", "CVE-2018-5333", "CVE-2018-5344");
      script_xref(name:"USN", value:"3617-2");
    
      script_name(english:"Ubuntu 16.04 LTS : linux-hwe, linux-gcp, linux-oem vulnerabilities (USN-3617-2)");
      script_summary(english:"Checks dpkg output for updated packages.");
    
      script_set_attribute(
        attribute:"synopsis", 
        value:
    "The remote Ubuntu host is missing one or more security-related
    patches."
      );
      script_set_attribute(
        attribute:"description", 
        value:
    "USN-3617-1 fixed vulnerabilities in the Linux kernel for Ubuntu 17.10.
    This update provides the corresponding updates for the Linux Hardware
    Enablement (HWE) kernel from Ubuntu 17.10 for Ubuntu 16.04 LTS.
    
    It was discovered that a race condition leading to a use-after-free
    vulnerability existed in the ALSA PCM subsystem of the Linux kernel. A
    local attacker could use this to cause a denial of service (system
    crash) or possibly execute arbitrary code. (CVE-2017-0861)
    
    It was discovered that the KVM implementation in the Linux kernel
    allowed passthrough of the diagnostic I/O port 0x80. An attacker in a
    guest VM could use this to cause a denial of service (system crash) in
    the host OS. (CVE-2017-1000407)
    
    It was discovered that a use-after-free vulnerability existed in the
    network namespaces implementation in the Linux kernel. A local
    attacker could use this to cause a denial of service (system crash) or
    possibly execute arbitrary code. (CVE-2017-15129)
    
    Andrey Konovalov discovered that the usbtest device driver in the
    Linux kernel did not properly validate endpoint metadata. A physically
    proximate attacker could use this to cause a denial of service (system
    crash). (CVE-2017-16532)
    
    Andrey Konovalov discovered that the SoundGraph iMON USB driver in the
    Linux kernel did not properly validate device metadata. A physically
    proximate attacker could use this to cause a denial of service (system
    crash). (CVE-2017-16537)
    
    Andrey Konovalov discovered that the IMS Passenger Control Unit USB
    driver in the Linux kernel did not properly validate device
    descriptors. A physically proximate attacker could use this to cause a
    denial of service (system crash). (CVE-2017-16645)
    
    Andrey Konovalov discovered that the DiBcom DiB0700 USB DVB driver in
    the Linux kernel did not properly handle detach events. A physically
    proximate attacker could use this to cause a denial of service (system
    crash). (CVE-2017-16646)
    
    Andrey Konovalov discovered that the ASIX Ethernet USB driver in the
    Linux kernel did not properly handle suspend and resume events. A
    physically proximate attacker could use this to cause a denial of
    service (system crash). (CVE-2017-16647)
    
    Andrey Konovalov discovered that the CDC USB Ethernet driver did not
    properly validate device descriptors. A physically proximate attacker
    could use this to cause a denial of service (system crash).
    (CVE-2017-16649)
    
    Andrey Konovalov discovered that the QMI WWAN USB driver did not
    properly validate device descriptors. A physically proximate attacker
    could use this to cause a denial of service (system crash).
    (CVE-2017-16650)
    
    It was discovered that the HugeTLB component of the Linux kernel did
    not properly handle holes in hugetlb ranges. A local attacker could
    use this to expose sensitive information (kernel memory).
    (CVE-2017-16994)
    
    It was discovered that the netfilter component of the Linux did not
    properly restrict access to the connection tracking helpers list. A
    local attacker could use this to bypass intended access restrictions.
    (CVE-2017-17448)
    
    It was discovered that the netfilter passive OS fingerprinting
    (xt_osf) module did not properly perform access control checks. A
    local attacker could improperly modify the system-wide OS fingerprint
    list. (CVE-2017-17450)
    
    Dmitry Vyukov discovered that the KVM implementation in the Linux
    kernel contained an out-of-bounds read when handling memory-mapped
    I/O. A local attacker could use this to expose sensitive information.
    (CVE-2017-17741)
    
    It was discovered that the Salsa20 encryption algorithm
    implementations in the Linux kernel did not properly handle
    zero-length inputs. A local attacker could use this to cause a denial
    of service (system crash). (CVE-2017-17805)
    
    It was discovered that the HMAC implementation did not validate the
    state of the underlying cryptographic hash algorithm. A local attacker
    could use this to cause a denial of service (system crash) or possibly
    execute arbitrary code. (CVE-2017-17806)
    
    It was discovered that the keyring implementation in the Linux kernel
    did not properly check permissions when a key request was performed on
    a tasks' default keyring. A local attacker could use this to add keys
    to unauthorized keyrings. (CVE-2017-17807)
    
    It was discovered that a race condition existed in the OCFS2 file
    system implementation in the Linux kernel. A local attacker could use
    this to cause a denial of service (kernel deadlock). (CVE-2017-18204)
    
    It was discovered that the Broadcom NetXtremeII ethernet driver in the
    Linux kernel did not properly validate Generic Segment Offload (GSO)
    packet sizes. An attacker could use this to cause a denial of service
    (interface unavailability). (CVE-2018-1000026)
    
    It was discovered that the Reliable Datagram Socket (RDS)
    implementation in the Linux kernel contained an out-of-bounds during
    RDMA page allocation. An attacker could use this to cause a denial of
    service (system crash) or possibly execute arbitrary code.
    (CVE-2018-5332)
    
    Mohamed Ghannam discovered a NULL pointer dereference in the RDS
    (Reliable Datagram Sockets) protocol implementation of the Linux
    kernel. A local attacker could use this to cause a denial of service
    (system crash). (CVE-2018-5333)
    
    Fan Long Fei  discovered that a race condition existed in loop block
    device implementation in the Linux kernel. A local attacker could use
    this to cause a denial of service (system crash) or possibly execute
    arbitrary code. (CVE-2018-5344).
    
    Note that Tenable Network Security has extracted the preceding
    description block directly from the Ubuntu security advisory. Tenable
    has attempted to automatically clean and format it as much as possible
    without introducing additional issues."
      );
      script_set_attribute(
        attribute:"see_also",
        value:"https://usn.ubuntu.com/3617-2/"
      );
      script_set_attribute(attribute:"solution", value:"Update the affected packages.");
      script_set_cvss_base_vector("CVSS2#AV:L/AC:L/Au:N/C:C/I:C/A:C");
      script_set_cvss_temporal_vector("CVSS2#E:POC/RL:OF/RC:C");
      script_set_cvss3_base_vector("CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H");
      script_set_cvss3_temporal_vector("CVSS:3.0/E:P/RL:O/RC:C");
      script_set_attribute(attribute:"exploitability_ease", value:"Exploits are available");
      script_set_attribute(attribute:"exploit_available", value:"true");
      script_set_attribute(attribute:"metasploit_name", value:'Reliable Datagram Sockets (RDS) rds_atomic_free_op NULL pointer dereference Privilege Escalation');
      script_set_attribute(attribute:"exploit_framework_metasploit", value:"true");
    
      script_set_attribute(attribute:"plugin_type", value:"local");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-4.13-gcp");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-4.13-generic");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-4.13-generic-lpae");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-4.13-lowlatency");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-4.13-oem");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-gcp");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-generic-hwe-16.04");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-generic-lpae-hwe-16.04");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-gke");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-lowlatency-hwe-16.04");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-oem");
      script_set_attribute(attribute:"cpe", value:"cpe:/o:canonical:ubuntu_linux:16.04");
    
      script_set_attribute(attribute:"vuln_publication_date", value:"2017/11/04");
      script_set_attribute(attribute:"patch_publication_date", value:"2018/04/03");
      script_set_attribute(attribute:"plugin_publication_date", value:"2018/04/04");
      script_set_attribute(attribute:"generated_plugin", value:"current");
      script_end_attributes();
    
      script_category(ACT_GATHER_INFO);
      script_copyright(english:"Ubuntu Security Notice (C) 2018-2020 Canonical, Inc. / NASL script (C) 2018-2020 and is owned by Tenable, Inc. or an Affiliate thereof.");
      script_family(english:"Ubuntu Local Security Checks");
    
      script_dependencies("ssh_get_info.nasl", "linux_alt_patch_detect.nasl");
      script_require_keys("Host/cpu", "Host/Ubuntu", "Host/Ubuntu/release", "Host/Debian/dpkg-l");
    
      exit(0);
    }
    
    
    include("audit.inc");
    include("ubuntu.inc");
    include("ksplice.inc");
    
    if ( ! get_kb_item("Host/local_checks_enabled") ) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED);
    release = get_kb_item("Host/Ubuntu/release");
    if ( isnull(release) ) audit(AUDIT_OS_NOT, "Ubuntu");
    release = chomp(release);
    if (! preg(pattern:"^(16\.04)$", string:release)) audit(AUDIT_OS_NOT, "Ubuntu 16.04", "Ubuntu " + release);
    if ( ! get_kb_item("Host/Debian/dpkg-l") ) audit(AUDIT_PACKAGE_LIST_MISSING);
    
    cpu = get_kb_item("Host/cpu");
    if (isnull(cpu)) audit(AUDIT_UNKNOWN_ARCH);
    if ("x86_64" >!< cpu && cpu !~ "^i[3-6]86$") audit(AUDIT_LOCAL_CHECKS_NOT_IMPLEMENTED, "Ubuntu", cpu);
    
    if (get_one_kb_item("Host/ksplice/kernel-cves"))
    {
      rm_kb_item(name:"Host/uptrack-uname-r");
      cve_list = make_list("CVE-2017-0861", "CVE-2017-1000407", "CVE-2017-15129", "CVE-2017-16532", "CVE-2017-16537", "CVE-2017-16645", "CVE-2017-16646", "CVE-2017-16647", "CVE-2017-16649", "CVE-2017-16650", "CVE-2017-16994", "CVE-2017-17448", "CVE-2017-17450", "CVE-2017-17741", "CVE-2017-17805", "CVE-2017-17806", "CVE-2017-17807", "CVE-2017-18204", "CVE-2018-1000026", "CVE-2018-5332", "CVE-2018-5333", "CVE-2018-5344");
      if (ksplice_cves_check(cve_list))
      {
        audit(AUDIT_PATCH_INSTALLED, "KSplice hotfix for USN-3617-2");
      }
      else
      {
        _ubuntu_report = ksplice_reporting_text();
      }
    }
    
    flag = 0;
    
    if (ubuntu_check(osver:"16.04", pkgname:"linux-image-4.13.0-1012-gcp", pkgver:"4.13.0-1012.16")) flag++;
    if (ubuntu_check(osver:"16.04", pkgname:"linux-image-4.13.0-1022-oem", pkgver:"4.13.0-1022.24")) flag++;
    if (ubuntu_check(osver:"16.04", pkgname:"linux-image-4.13.0-38-generic", pkgver:"4.13.0-38.43~16.04.1")) flag++;
    if (ubuntu_check(osver:"16.04", pkgname:"linux-image-4.13.0-38-generic-lpae", pkgver:"4.13.0-38.43~16.04.1")) flag++;
    if (ubuntu_check(osver:"16.04", pkgname:"linux-image-4.13.0-38-lowlatency", pkgver:"4.13.0-38.43~16.04.1")) flag++;
    if (ubuntu_check(osver:"16.04", pkgname:"linux-image-gcp", pkgver:"4.13.0.1012.14")) flag++;
    if (ubuntu_check(osver:"16.04", pkgname:"linux-image-generic-hwe-16.04", pkgver:"4.13.0.38.57")) flag++;
    if (ubuntu_check(osver:"16.04", pkgname:"linux-image-generic-lpae-hwe-16.04", pkgver:"4.13.0.38.57")) flag++;
    if (ubuntu_check(osver:"16.04", pkgname:"linux-image-gke", pkgver:"4.13.0.1012.14")) flag++;
    if (ubuntu_check(osver:"16.04", pkgname:"linux-image-lowlatency-hwe-16.04", pkgver:"4.13.0.38.57")) flag++;
    if (ubuntu_check(osver:"16.04", pkgname:"linux-image-oem", pkgver:"4.13.0.1022.26")) flag++;
    
    if (flag)
    {
      security_report_v4(
        port       : 0,
        severity   : SECURITY_HOLE,
        extra      : ubuntu_report_get()
      );
      exit(0);
    }
    else
    {
      tested = ubuntu_pkg_tests_get();
      if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested);
      else audit(AUDIT_PACKAGE_NOT_INSTALLED, "linux-image-4.13-gcp / linux-image-4.13-generic / etc");
    }
    
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-3754-1.NASL
    descriptionRalf Spenneberg discovered that the ext4 implementation in the Linux kernel did not properly validate meta block groups. An attacker with physical access could use this to specially craft an ext4 image that causes a denial of service (system crash). (CVE-2016-10208) It was discovered that an information disclosure vulnerability existed in the ACPI implementation of the Linux kernel. A local attacker could use this to expose sensitive information (kernel memory addresses). (CVE-2017-11472) It was discovered that a buffer overflow existed in the ACPI table parsing implementation in the Linux kernel. A local attacker could use this to construct a malicious ACPI table that, when loaded, caused a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-11473) It was discovered that the generic SCSI driver in the Linux kernel did not properly initialize data returned to user space in some situations. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2017-14991) It was discovered that a race condition existed in the packet fanout implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-15649) Andrey Konovalov discovered that the Ultra Wide Band driver in the Linux kernel did not properly check for an error condition. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16526) Andrey Konovalov discovered that the ALSA subsystem in the Linux kernel contained a use-after-free vulnerability. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16527) Andrey Konovalov discovered that the ALSA subsystem in the Linux kernel did not properly validate USB audio buffer descriptors. A physically proximate attacker could use this cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16529) Andrey Konovalov discovered that the USB subsystem in the Linux kernel did not properly validate USB interface association descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16531) Andrey Konovalov discovered that the usbtest device driver in the Linux kernel did not properly validate endpoint metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16532) Andrey Konovalov discovered that the USB subsystem in the Linux kernel did not properly validate USB HID descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16533) Andrey Konovalov discovered that the USB subsystem in the Linux kernel did not properly validate USB BOS metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16535) Andrey Konovalov discovered that the Conexant cx231xx USB video capture driver in the Linux kernel did not properly validate interface descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16536) Andrey Konovalov discovered that the SoundGraph iMON USB driver in the Linux kernel did not properly validate device metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16537) It was discovered that the DM04/QQBOX USB driver in the Linux kernel did not properly handle device attachment and warm-start. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16538) Andrey Konovalov discovered an out-of-bounds read in the GTCO digitizer USB driver for the Linux kernel. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16643) Andrey Konovalov discovered that the video4linux driver for Hauppauge HD PVR USB devices in the Linux kernel did not properly handle some error conditions. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16644) Andrey Konovalov discovered that the IMS Passenger Control Unit USB driver in the Linux kernel did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16645) Andrey Konovalov discovered that the QMI WWAN USB driver did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16650) It was discovered that the USB Virtual Host Controller Interface (VHCI) driver in the Linux kernel contained an information disclosure vulnerability. A physically proximate attacker could use this to expose sensitive information (kernel memory). (CVE-2017-16911) It was discovered that the USB over IP implementation in the Linux kernel did not validate endpoint numbers. A remote attacker could use this to cause a denial of service (system crash). (CVE-2017-16912) It was discovered that the USB over IP implementation in the Linux kernel did not properly validate CMD_SUBMIT packets. A remote attacker could use this to cause a denial of service (excessive memory consumption). (CVE-2017-16913) It was discovered that the USB over IP implementation in the Linux kernel contained a NULL pointer dereference error. A remote attacker could use this to cause a denial of service (system crash). (CVE-2017-16914) It was discovered that the core USB subsystem in the Linux kernel did not validate the number of configurations and interfaces in a device. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-17558) It was discovered that an integer overflow existed in the perf subsystem of the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-18255) It was discovered that the keyring subsystem in the Linux kernel did not properly prevent a user from creating keyrings for other users. A local attacker could use this cause a denial of service or expose sensitive information. (CVE-2017-18270) Andy Lutomirski and Willy Tarreau discovered that the KVM implementation in the Linux kernel did not properly emulate instructions on the SS segment register. A local attacker in a guest virtual machine could use this to cause a denial of service (guest OS crash) or possibly gain administrative privileges in the guest OS. (CVE-2017-2583) Dmitry Vyukov discovered that the KVM implementation in the Linux kernel improperly emulated certain instructions. A local attacker could use this to obtain sensitive information (kernel memory). (CVE-2017-2584) It was discovered that the KLSI KL5KUSB105 serial-to-USB device driver in the Linux kernel did not properly initialize memory related to logging. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2017-5549) Andrey Konovalov discovered an out-of-bounds access in the IPv6 Generic Routing Encapsulation (GRE) tunneling implementation in the Linux kernel. An attacker could use this to possibly expose sensitive information. (CVE-2017-5897) Andrey Konovalov discovered that the LLC subsytem in the Linux kernel did not properly set up a destructor in certain situations. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-6345) Dmitry Vyukov discovered race conditions in the Infrared (IrDA) subsystem in the Linux kernel. A local attacker could use this to cause a denial of service (deadlock). (CVE-2017-6348) Andy Lutomirski discovered that the KVM implementation in the Linux kernel was vulnerable to a debug exception error when single-stepping through a syscall. A local attacker in a non-Linux guest vm could possibly use this to gain administrative privileges in the guest vm. (CVE-2017-7518) Tuomas Haanpaa and Ari Kauppi discovered that the NFSv2 and NFSv3 server implementations in the Linux kernel did not properly handle certain long RPC replies. A remote attacker could use this to cause a denial of service (system crash). (CVE-2017-7645) Pengfei Wang discovered that a race condition existed in the NXP SAA7164 TV Decoder driver for the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-8831) Pengfei Wang discovered that the Turtle Beach MultiSound audio device driver in the Linux kernel contained race conditions when fetching from the ring-buffer. A local attacker could use this to cause a denial of service (infinite loop). (CVE-2017-9984, CVE-2017-9985) It was discovered that the wait4() system call in the Linux kernel did not properly validate its arguments in some situations. A local attacker could possibly use this to cause a denial of service. (CVE-2018-10087) It was discovered that the kill() system call implementation in the Linux kernel did not properly validate its arguments in some situations. A local attacker could possibly use this to cause a denial of service. (CVE-2018-10124) Wen Xu discovered that the XFS filesystem implementation in the Linux kernel did not properly validate meta-data information. An attacker could use this to construct a malicious xfs image that, when mounted, could cause a denial of service (system crash). (CVE-2018-10323) Zhong Jiang discovered that a use-after-free vulnerability existed in the NUMA memory policy implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-10675) Wen Xu discovered that a buffer overflow existed in the ext4 filesystem implementation in the Linux kernel. An attacker could use this to construct a malicious ext4 image that, when mounted, could cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-10877) Wen Xu discovered that the ext4 filesystem implementation in the Linux kernel did not properly keep meta-data information consistent in some situations. An attacker could use this to construct a malicious ext4 image that, when mounted, could cause a denial of service (system crash). (CVE-2018-10881) Wen Xu discovered that the ext4 filesystem implementation in the Linux kernel did not properly handle corrupted meta data in some situations. An attacker could use this to specially craft an ext4 file system that caused a denial of service (system crash) when mounted. (CVE-2018-1092) Wen Xu discovered that the ext4 filesystem implementation in the Linux kernel did not properly handle corrupted meta data in some situations. An attacker could use this to specially craft an ext4 filesystem that caused a denial of service (system crash) when mounted. (CVE-2018-1093) It was discovered that the cdrom driver in the Linux kernel contained an incorrect bounds check. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2018-10940) Shankara Pailoor discovered that the JFS filesystem implementation in the Linux kernel contained a buffer overflow when handling extended attributes. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-12233) Wen Xu discovered that the XFS filesystem implementation in the Linux kernel did not properly handle an error condition with a corrupted xfs image. An attacker could use this to construct a malicious xfs image that, when mounted, could cause a denial of service (system crash). (CVE-2018-13094) It was discovered that the Linux kernel did not properly handle setgid file creation when performed by a non-member of the group. A local attacker could use this to gain elevated privileges. (CVE-2018-13405) Silvio Cesare discovered that the generic VESA frame buffer driver in the Linux kernel contained an integer overflow. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-13406) Daniel Jiang discovered that a race condition existed in the ipv4 ping socket implementation in the Linux kernel. A local privileged attacker could use this to cause a denial of service (system crash). (CVE-2017-2671) It was discovered that an information leak existed in the generic SCSI driver in the Linux kernel. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2018-1000204) It was discovered that a memory leak existed in the Serial Attached SCSI (SAS) implementation in the Linux kernel. A physically proximate attacker could use this to cause a denial of service (memory exhaustion). (CVE-2018-10021). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen2020-06-01
    modified2020-06-02
    plugin id112113
    published2018-08-24
    reporterUbuntu Security Notice (C) 2018-2019 Canonical, Inc. / NASL script (C) 2018-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/112113
    titleUbuntu 14.04 LTS : linux vulnerabilities (USN-3754-1)
    code
    #
    # (C) Tenable Network Security, Inc.
    #
    # The descriptive text and package checks in this plugin were
    # extracted from Ubuntu Security Notice USN-3754-1. The text 
    # itself is copyright (C) Canonical, Inc. See 
    # <http://www.ubuntu.com/usn/>. Ubuntu(R) is a registered 
    # trademark of Canonical, Inc.
    #
    
    include("compat.inc");
    
    if (description)
    {
      script_id(112113);
      script_version("1.6");
      script_cvs_date("Date: 2019/09/18 12:31:48");
    
      script_cve_id("CVE-2016-10208", "CVE-2017-11472", "CVE-2017-11473", "CVE-2017-14991", "CVE-2017-15649", "CVE-2017-16526", "CVE-2017-16527", "CVE-2017-16529", "CVE-2017-16531", "CVE-2017-16532", "CVE-2017-16533", "CVE-2017-16535", "CVE-2017-16536", "CVE-2017-16537", "CVE-2017-16538", "CVE-2017-16643", "CVE-2017-16644", "CVE-2017-16645", "CVE-2017-16650", "CVE-2017-16911", "CVE-2017-16912", "CVE-2017-16913", "CVE-2017-16914", "CVE-2017-17558", "CVE-2017-18255", "CVE-2017-18270", "CVE-2017-2583", "CVE-2017-2584", "CVE-2017-2671", "CVE-2017-5549", "CVE-2017-5897", "CVE-2017-6345", "CVE-2017-6348", "CVE-2017-7518", "CVE-2017-7645", "CVE-2017-8831", "CVE-2017-9984", "CVE-2017-9985", "CVE-2018-1000204", "CVE-2018-10021", "CVE-2018-10087", "CVE-2018-10124", "CVE-2018-10323", "CVE-2018-10675", "CVE-2018-10877", "CVE-2018-10881", "CVE-2018-1092", "CVE-2018-1093", "CVE-2018-10940", "CVE-2018-12233", "CVE-2018-13094", "CVE-2018-13405", "CVE-2018-13406");
      script_xref(name:"USN", value:"3754-1");
    
      script_name(english:"Ubuntu 14.04 LTS : linux vulnerabilities (USN-3754-1)");
      script_summary(english:"Checks dpkg output for updated packages.");
    
      script_set_attribute(
        attribute:"synopsis", 
        value:
    "The remote Ubuntu host is missing one or more security-related
    patches."
      );
      script_set_attribute(
        attribute:"description", 
        value:
    "Ralf Spenneberg discovered that the ext4 implementation in the Linux
    kernel did not properly validate meta block groups. An attacker with
    physical access could use this to specially craft an ext4 image that
    causes a denial of service (system crash). (CVE-2016-10208)
    
    It was discovered that an information disclosure vulnerability existed
    in the ACPI implementation of the Linux kernel. A local attacker could
    use this to expose sensitive information (kernel memory addresses).
    (CVE-2017-11472)
    
    It was discovered that a buffer overflow existed in the ACPI table
    parsing implementation in the Linux kernel. A local attacker could use
    this to construct a malicious ACPI table that, when loaded, caused a
    denial of service (system crash) or possibly execute arbitrary code.
    (CVE-2017-11473)
    
    It was discovered that the generic SCSI driver in the Linux kernel did
    not properly initialize data returned to user space in some
    situations. A local attacker could use this to expose sensitive
    information (kernel memory). (CVE-2017-14991)
    
    It was discovered that a race condition existed in the packet fanout
    implementation in the Linux kernel. A local attacker could use this to
    cause a denial of service (system crash) or possibly execute arbitrary
    code. (CVE-2017-15649)
    
    Andrey Konovalov discovered that the Ultra Wide Band driver in the
    Linux kernel did not properly check for an error condition. A
    physically proximate attacker could use this to cause a denial of
    service (system crash) or possibly execute arbitrary code.
    (CVE-2017-16526)
    
    Andrey Konovalov discovered that the ALSA subsystem in the Linux
    kernel contained a use-after-free vulnerability. A local attacker
    could use this to cause a denial of service (system crash) or possibly
    execute arbitrary code. (CVE-2017-16527)
    
    Andrey Konovalov discovered that the ALSA subsystem in the Linux
    kernel did not properly validate USB audio buffer descriptors. A
    physically proximate attacker could use this cause a denial of service
    (system crash) or possibly execute arbitrary code. (CVE-2017-16529)
    
    Andrey Konovalov discovered that the USB subsystem in the Linux kernel
    did not properly validate USB interface association descriptors. A
    physically proximate attacker could use this to cause a denial of
    service (system crash). (CVE-2017-16531)
    
    Andrey Konovalov discovered that the usbtest device driver in the
    Linux kernel did not properly validate endpoint metadata. A physically
    proximate attacker could use this to cause a denial of service (system
    crash). (CVE-2017-16532)
    
    Andrey Konovalov discovered that the USB subsystem in the Linux kernel
    did not properly validate USB HID descriptors. A physically proximate
    attacker could use this to cause a denial of service (system crash).
    (CVE-2017-16533)
    
    Andrey Konovalov discovered that the USB subsystem in the Linux kernel
    did not properly validate USB BOS metadata. A physically proximate
    attacker could use this to cause a denial of service (system crash).
    (CVE-2017-16535)
    
    Andrey Konovalov discovered that the Conexant cx231xx USB video
    capture driver in the Linux kernel did not properly validate interface
    descriptors. A physically proximate attacker could use this to cause a
    denial of service (system crash). (CVE-2017-16536)
    
    Andrey Konovalov discovered that the SoundGraph iMON USB driver in the
    Linux kernel did not properly validate device metadata. A physically
    proximate attacker could use this to cause a denial of service (system
    crash). (CVE-2017-16537)
    
    It was discovered that the DM04/QQBOX USB driver in the Linux kernel
    did not properly handle device attachment and warm-start. A physically
    proximate attacker could use this to cause a denial of service (system
    crash) or possibly execute arbitrary code. (CVE-2017-16538)
    
    Andrey Konovalov discovered an out-of-bounds read in the GTCO
    digitizer USB driver for the Linux kernel. A physically proximate
    attacker could use this to cause a denial of service (system crash) or
    possibly execute arbitrary code. (CVE-2017-16643)
    
    Andrey Konovalov discovered that the video4linux driver for Hauppauge
    HD PVR USB devices in the Linux kernel did not properly handle some
    error conditions. A physically proximate attacker could use this to
    cause a denial of service (system crash) or possibly execute arbitrary
    code. (CVE-2017-16644)
    
    Andrey Konovalov discovered that the IMS Passenger Control Unit USB
    driver in the Linux kernel did not properly validate device
    descriptors. A physically proximate attacker could use this to cause a
    denial of service (system crash). (CVE-2017-16645)
    
    Andrey Konovalov discovered that the QMI WWAN USB driver did not
    properly validate device descriptors. A physically proximate attacker
    could use this to cause a denial of service (system crash).
    (CVE-2017-16650)
    
    It was discovered that the USB Virtual Host Controller Interface
    (VHCI) driver in the Linux kernel contained an information disclosure
    vulnerability. A physically proximate attacker could use this to
    expose sensitive information (kernel memory). (CVE-2017-16911)
    
    It was discovered that the USB over IP implementation in the Linux
    kernel did not validate endpoint numbers. A remote attacker could use
    this to cause a denial of service (system crash). (CVE-2017-16912)
    
    It was discovered that the USB over IP implementation in the Linux
    kernel did not properly validate CMD_SUBMIT packets. A remote attacker
    could use this to cause a denial of service (excessive memory
    consumption). (CVE-2017-16913)
    
    It was discovered that the USB over IP implementation in the Linux
    kernel contained a NULL pointer dereference error. A remote attacker
    could use this to cause a denial of service (system crash).
    (CVE-2017-16914)
    
    It was discovered that the core USB subsystem in the Linux kernel did
    not validate the number of configurations and interfaces in a device.
    A physically proximate attacker could use this to cause a denial of
    service (system crash). (CVE-2017-17558)
    
    It was discovered that an integer overflow existed in the perf
    subsystem of the Linux kernel. A local attacker could use this to
    cause a denial of service (system crash). (CVE-2017-18255)
    
    It was discovered that the keyring subsystem in the Linux kernel did
    not properly prevent a user from creating keyrings for other users. A
    local attacker could use this cause a denial of service or expose
    sensitive information. (CVE-2017-18270)
    
    Andy Lutomirski and Willy Tarreau discovered that the KVM
    implementation in the Linux kernel did not properly emulate
    instructions on the SS segment register. A local attacker in a guest
    virtual machine could use this to cause a denial of service (guest OS
    crash) or possibly gain administrative privileges in the guest OS.
    (CVE-2017-2583)
    
    Dmitry Vyukov discovered that the KVM implementation in the Linux
    kernel improperly emulated certain instructions. A local attacker
    could use this to obtain sensitive information (kernel memory).
    (CVE-2017-2584)
    
    It was discovered that the KLSI KL5KUSB105 serial-to-USB device driver
    in the Linux kernel did not properly initialize memory related to
    logging. A local attacker could use this to expose sensitive
    information (kernel memory). (CVE-2017-5549)
    
    Andrey Konovalov discovered an out-of-bounds access in the IPv6
    Generic Routing Encapsulation (GRE) tunneling implementation in the
    Linux kernel. An attacker could use this to possibly expose sensitive
    information. (CVE-2017-5897)
    
    Andrey Konovalov discovered that the LLC subsytem in the Linux kernel
    did not properly set up a destructor in certain situations. A local
    attacker could use this to cause a denial of service (system crash).
    (CVE-2017-6345)
    
    Dmitry Vyukov discovered race conditions in the Infrared (IrDA)
    subsystem in the Linux kernel. A local attacker could use this to
    cause a denial of service (deadlock). (CVE-2017-6348)
    
    Andy Lutomirski discovered that the KVM implementation in the Linux
    kernel was vulnerable to a debug exception error when single-stepping
    through a syscall. A local attacker in a non-Linux guest vm could
    possibly use this to gain administrative privileges in the guest vm.
    (CVE-2017-7518)
    
    Tuomas Haanpaa and Ari Kauppi discovered that the NFSv2 and NFSv3
    server implementations in the Linux kernel did not properly handle
    certain long RPC replies. A remote attacker could use this to cause a
    denial of service (system crash). (CVE-2017-7645)
    
    Pengfei Wang discovered that a race condition existed in the NXP
    SAA7164 TV Decoder driver for the Linux kernel. A local attacker could
    use this to cause a denial of service (system crash) or possibly
    execute arbitrary code. (CVE-2017-8831)
    
    Pengfei Wang discovered that the Turtle Beach MultiSound audio device
    driver in the Linux kernel contained race conditions when fetching
    from the ring-buffer. A local attacker could use this to cause a
    denial of service (infinite loop). (CVE-2017-9984, CVE-2017-9985)
    
    It was discovered that the wait4() system call in the Linux kernel did
    not properly validate its arguments in some situations. A local
    attacker could possibly use this to cause a denial of service.
    (CVE-2018-10087)
    
    It was discovered that the kill() system call implementation in the
    Linux kernel did not properly validate its arguments in some
    situations. A local attacker could possibly use this to cause a denial
    of service. (CVE-2018-10124)
    
    Wen Xu discovered that the XFS filesystem implementation in the Linux
    kernel did not properly validate meta-data information. An attacker
    could use this to construct a malicious xfs image that, when mounted,
    could cause a denial of service (system crash). (CVE-2018-10323)
    
    Zhong Jiang discovered that a use-after-free vulnerability existed in
    the NUMA memory policy implementation in the Linux kernel. A local
    attacker could use this to cause a denial of service (system crash) or
    possibly execute arbitrary code. (CVE-2018-10675)
    
    Wen Xu discovered that a buffer overflow existed in the ext4
    filesystem implementation in the Linux kernel. An attacker could use
    this to construct a malicious ext4 image that, when mounted, could
    cause a denial of service (system crash) or possibly execute arbitrary
    code. (CVE-2018-10877)
    
    Wen Xu discovered that the ext4 filesystem implementation in the Linux
    kernel did not properly keep meta-data information consistent in some
    situations. An attacker could use this to construct a malicious ext4
    image that, when mounted, could cause a denial of service (system
    crash). (CVE-2018-10881)
    
    Wen Xu discovered that the ext4 filesystem implementation in the Linux
    kernel did not properly handle corrupted meta data in some situations.
    An attacker could use this to specially craft an ext4 file system that
    caused a denial of service (system crash) when mounted.
    (CVE-2018-1092)
    
    Wen Xu discovered that the ext4 filesystem implementation in the Linux
    kernel did not properly handle corrupted meta data in some situations.
    An attacker could use this to specially craft an ext4 filesystem that
    caused a denial of service (system crash) when mounted.
    (CVE-2018-1093)
    
    It was discovered that the cdrom driver in the Linux kernel contained
    an incorrect bounds check. A local attacker could use this to expose
    sensitive information (kernel memory). (CVE-2018-10940)
    
    Shankara Pailoor discovered that the JFS filesystem implementation in
    the Linux kernel contained a buffer overflow when handling extended
    attributes. A local attacker could use this to cause a denial of
    service (system crash) or possibly execute arbitrary code.
    (CVE-2018-12233)
    
    Wen Xu discovered that the XFS filesystem implementation in the Linux
    kernel did not properly handle an error condition with a corrupted xfs
    image. An attacker could use this to construct a malicious xfs image
    that, when mounted, could cause a denial of service (system crash).
    (CVE-2018-13094)
    
    It was discovered that the Linux kernel did not properly handle setgid
    file creation when performed by a non-member of the group. A local
    attacker could use this to gain elevated privileges. (CVE-2018-13405)
    
    Silvio Cesare discovered that the generic VESA frame buffer driver in
    the Linux kernel contained an integer overflow. A local attacker could
    use this to cause a denial of service (system crash) or possibly
    execute arbitrary code. (CVE-2018-13406)
    
    Daniel Jiang discovered that a race condition existed in the ipv4 ping
    socket implementation in the Linux kernel. A local privileged attacker
    could use this to cause a denial of service (system crash).
    (CVE-2017-2671)
    
    It was discovered that an information leak existed in the generic SCSI
    driver in the Linux kernel. A local attacker could use this to expose
    sensitive information (kernel memory). (CVE-2018-1000204)
    
    It was discovered that a memory leak existed in the Serial Attached
    SCSI (SAS) implementation in the Linux kernel. A physically proximate
    attacker could use this to cause a denial of service (memory
    exhaustion). (CVE-2018-10021).
    
    Note that Tenable Network Security has extracted the preceding
    description block directly from the Ubuntu security advisory. Tenable
    has attempted to automatically clean and format it as much as possible
    without introducing additional issues."
      );
      script_set_attribute(
        attribute:"see_also",
        value:"https://usn.ubuntu.com/3754-1/"
      );
      script_set_attribute(attribute:"solution", value:"Update the affected packages.");
      script_set_cvss_base_vector("CVSS2#AV:N/AC:L/Au:N/C:N/I:N/A:C");
      script_set_cvss_temporal_vector("CVSS2#E:POC/RL:OF/RC:C");
      script_set_cvss3_base_vector("CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H");
      script_set_cvss3_temporal_vector("CVSS:3.0/E:P/RL:O/RC:C");
      script_set_attribute(attribute:"exploitability_ease", value:"Exploits are available");
      script_set_attribute(attribute:"exploit_available", value:"true");
    
      script_set_attribute(attribute:"plugin_type", value:"local");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-3.13-generic");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-3.13-generic-lpae");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-3.13-lowlatency");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-generic");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-generic-lpae");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-lowlatency");
      script_set_attribute(attribute:"cpe", value:"cpe:/o:canonical:ubuntu_linux:14.04");
    
      script_set_attribute(attribute:"vuln_publication_date", value:"2017/01/15");
      script_set_attribute(attribute:"patch_publication_date", value:"2018/08/24");
      script_set_attribute(attribute:"plugin_publication_date", value:"2018/08/24");
      script_set_attribute(attribute:"generated_plugin", value:"current");
      script_end_attributes();
    
      script_category(ACT_GATHER_INFO);
      script_copyright(english:"Ubuntu Security Notice (C) 2018-2019 Canonical, Inc. / NASL script (C) 2018-2019 and is owned by Tenable, Inc. or an Affiliate thereof.");
      script_family(english:"Ubuntu Local Security Checks");
    
      script_dependencies("ssh_get_info.nasl", "linux_alt_patch_detect.nasl");
      script_require_keys("Host/cpu", "Host/Ubuntu", "Host/Ubuntu/release", "Host/Debian/dpkg-l");
    
      exit(0);
    }
    
    
    include("audit.inc");
    include("ubuntu.inc");
    include("ksplice.inc");
    
    if ( ! get_kb_item("Host/local_checks_enabled") ) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED);
    release = get_kb_item("Host/Ubuntu/release");
    if ( isnull(release) ) audit(AUDIT_OS_NOT, "Ubuntu");
    release = chomp(release);
    if (! preg(pattern:"^(14\.04)$", string:release)) audit(AUDIT_OS_NOT, "Ubuntu 14.04", "Ubuntu " + release);
    if ( ! get_kb_item("Host/Debian/dpkg-l") ) audit(AUDIT_PACKAGE_LIST_MISSING);
    
    cpu = get_kb_item("Host/cpu");
    if (isnull(cpu)) audit(AUDIT_UNKNOWN_ARCH);
    if ("x86_64" >!< cpu && cpu !~ "^i[3-6]86$") audit(AUDIT_LOCAL_CHECKS_NOT_IMPLEMENTED, "Ubuntu", cpu);
    
    if (get_one_kb_item("Host/ksplice/kernel-cves"))
    {
      rm_kb_item(name:"Host/uptrack-uname-r");
      cve_list = make_list("CVE-2016-10208", "CVE-2017-11472", "CVE-2017-11473", "CVE-2017-14991", "CVE-2017-15649", "CVE-2017-16526", "CVE-2017-16527", "CVE-2017-16529", "CVE-2017-16531", "CVE-2017-16532", "CVE-2017-16533", "CVE-2017-16535", "CVE-2017-16536", "CVE-2017-16537", "CVE-2017-16538", "CVE-2017-16643", "CVE-2017-16644", "CVE-2017-16645", "CVE-2017-16650", "CVE-2017-16911", "CVE-2017-16912", "CVE-2017-16913", "CVE-2017-16914", "CVE-2017-17558", "CVE-2017-18255", "CVE-2017-18270", "CVE-2017-2583", "CVE-2017-2584", "CVE-2017-2671", "CVE-2017-5549", "CVE-2017-5897", "CVE-2017-6345", "CVE-2017-6348", "CVE-2017-7518", "CVE-2017-7645", "CVE-2017-8831", "CVE-2017-9984", "CVE-2017-9985", "CVE-2018-1000204", "CVE-2018-10021", "CVE-2018-10087", "CVE-2018-10124", "CVE-2018-10323", "CVE-2018-10675", "CVE-2018-10877", "CVE-2018-10881", "CVE-2018-1092", "CVE-2018-1093", "CVE-2018-10940", "CVE-2018-12233", "CVE-2018-13094", "CVE-2018-13405", "CVE-2018-13406");
      if (ksplice_cves_check(cve_list))
      {
        audit(AUDIT_PATCH_INSTALLED, "KSplice hotfix for USN-3754-1");
      }
      else
      {
        _ubuntu_report = ksplice_reporting_text();
      }
    }
    
    flag = 0;
    
    if (ubuntu_check(osver:"14.04", pkgname:"linux-image-3.13.0-157-generic", pkgver:"3.13.0-157.207")) flag++;
    if (ubuntu_check(osver:"14.04", pkgname:"linux-image-3.13.0-157-generic-lpae", pkgver:"3.13.0-157.207")) flag++;
    if (ubuntu_check(osver:"14.04", pkgname:"linux-image-3.13.0-157-lowlatency", pkgver:"3.13.0-157.207")) flag++;
    if (ubuntu_check(osver:"14.04", pkgname:"linux-image-generic", pkgver:"3.13.0.157.167")) flag++;
    if (ubuntu_check(osver:"14.04", pkgname:"linux-image-generic-lpae", pkgver:"3.13.0.157.167")) flag++;
    if (ubuntu_check(osver:"14.04", pkgname:"linux-image-lowlatency", pkgver:"3.13.0.157.167")) flag++;
    
    if (flag)
    {
      security_report_v4(
        port       : 0,
        severity   : SECURITY_HOLE,
        extra      : ubuntu_report_get()
      );
      exit(0);
    }
    else
    {
      tested = ubuntu_pkg_tests_get();
      if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested);
      else audit(AUDIT_PACKAGE_NOT_INSTALLED, "linux-image-3.13-generic / linux-image-3.13-generic-lpae / etc");
    }
    
  • NASL familyHuawei Local Security Checks
    NASL idEULEROS_SA-2017-1291.NASL
    descriptionAccording to the versions of the kernel packages installed, the EulerOS installation on the remote host is affected by the following vulnerabilities : - A vulnerability was found in the key management subsystem of the Linux kernel. An update on an uninstantiated key could cause a kernel panic, leading to denial of service (DoS).(CVE-2017-15299) - The usb_serial_console_disconnect function in drivers/usb/serial/console.c in the Linux kernel before 4.13.8 allows local users to cause a denial of service (use-after-free and system crash) or possibly have unspecified other impact via a crafted USB device, related to disconnection and failed setup.(CVE-2017-16525) - drivers/uwb/uwbd.c in the Linux kernel before 4.13.6 allows local users to cause a denial of service (general protection fault and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16526) - drivers/usb/core/config.c in the Linux kernel before 4.13.6 allows local users to cause a denial of service (out-of-bounds read and system crash) or possibly have unspecified other impact via a crafted USB device, related to the USB_DT_INTERFACE_ASSOCIATION descriptor.(CVE-2017-16531) - The get_endpoints function in drivers/usb/misc/usbtest.c in the Linux kernel through 4.13.11 allows local users to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16532) - The usbhid_parse function in drivers/hid/usbhid/hid-core.c in the Linux kernel before 4.13.8 allows local users to cause a denial of service (out-of-bounds read and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16533) - The uas driver in the Linux kernel before 4.13.6 allows local users to cause a denial of service (out-of-bounds read and system crash) or possibly have unspecified other impact via a crafted USB device, related to drivers/usb/storage/uas-detect.h and drivers/usb/storage/uas.c.(CVE-2017-16530) - The usb_get_bos_descriptor function in drivers/usb/core/config.c in the Linux kernel before 4.13.10 allows local users to cause a denial of service (out-of-bounds read and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16535) - A flaw was found that sound/core/timer.c in the Linux kernel before 4.11.5 is vulnerable to a data race in the ALSA /dev/snd/timer driver resulting in local users being able to read information belonging to other users. Uninitialized memory contents may be disclosed when a read and an ioctl happen at the same time.(CVE-2017-1000380) - The imon_probe function in drivers/media/rc/imon.c in the Linux kernel through 4.13.11 allows local users to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16537) - drivers/media/usb/dvb-usb-v2/lmedm04.c in the Linux kernel through 4.13.11 allows local users to cause a denial of service (general protection fault and system crash) or possibly have unspecified other impact via a crafted USB device, related to a missing warm-start check and incorrect attach timing (dm04_lme2510_frontend_attach versus dm04_lme2510_tuner).(CVE-2017-16538) - The cx231xx_usb_probe function in drivers/media/usb/cx231xx/cx231xx-cards.c in the Linux kernel through 4.13.11 allows local users to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16536) - The ims_pcu_get_cdc_union_desc function in drivers/input/misc/ims-pcu.c in the Linux kernel through 4.13.11 allows local users to cause a denial of service (ims_pcu_parse_cdc_data out-of-bounds read and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16645) - The parse_hid_report_descriptor function in drivers/input/tablet/gtco.c in the Linux kernel before 4.13.11 allows local users to cause a denial of service (out-of-bounds read and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16643) - The hdpvr_probe function in drivers/media/usb/hdpvr/hdpvr-core.c in the Linux kernel through 4.13.11 allows local users to cause a denial of service (improper error handling and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16644) - The cdc_parse_cdc_header function in drivers/usb/core/message.c in the Linux kernel before 4.13.6 allows local users to cause a denial of service (out-of-bounds read and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16534) - The qmi_wwan_bind function in drivers/net/usb/qmi_wwan.c in the Linux kernel through 4.13.11 allows local users to cause a denial of service (divide-by-zero error and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16650) - The usbnet_generic_cdc_bind function in drivers/net/usb/cdc_ether.c in the Linux kernel through 4.13.11 allows local users to cause a denial of service (divide-by-zero error and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16649) - The snd_usb_create_streams function in sound/usb/card.c in the Linux kernel before 4.13.6 allows local users to cause a denial of service (out-of-bounds read and system crash) or possibly have unspecified other impact via a crafted USB device.(CVE-2017-16529) Note that Tenable Network Security has extracted the preceding description block directly from the EulerOS security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen2020-05-06
    modified2017-12-01
    plugin id104910
    published2017-12-01
    reporterThis script is Copyright (C) 2017-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/104910
    titleEulerOS 2.0 SP1 : kernel (EulerOS-SA-2017-1291)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-3617-3.NASL
    descriptionIt was discovered that a race condition leading to a use-after-free vulnerability existed in the ALSA PCM subsystem of the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-0861) It was discovered that a use-after-free vulnerability existed in the network namespaces implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-15129) Andrey Konovalov discovered that the usbtest device driver in the Linux kernel did not properly validate endpoint metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16532) Andrey Konovalov discovered that the SoundGraph iMON USB driver in the Linux kernel did not properly validate device metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16537) Andrey Konovalov discovered that the IMS Passenger Control Unit USB driver in the Linux kernel did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16645) Andrey Konovalov discovered that the DiBcom DiB0700 USB DVB driver in the Linux kernel did not properly handle detach events. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16646) Andrey Konovalov discovered that the ASIX Ethernet USB driver in the Linux kernel did not properly handle suspend and resume events. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16647) Andrey Konovalov discovered that the CDC USB Ethernet driver did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16649) Andrey Konovalov discovered that the QMI WWAN USB driver did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16650) It was discovered that the HugeTLB component of the Linux kernel did not properly handle holes in hugetlb ranges. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2017-16994) It was discovered that the netfilter component of the Linux did not properly restrict access to the connection tracking helpers list. A local attacker could use this to bypass intended access restrictions. (CVE-2017-17448) It was discovered that the netfilter passive OS fingerprinting (xt_osf) module did not properly perform access control checks. A local attacker could improperly modify the system-wide OS fingerprint list. (CVE-2017-17450) Dmitry Vyukov discovered that the KVM implementation in the Linux kernel contained an out-of-bounds read when handling memory-mapped I/O. A local attacker could use this to expose sensitive information. (CVE-2017-17741) It was discovered that the Salsa20 encryption algorithm implementations in the Linux kernel did not properly handle zero-length inputs. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-17805) It was discovered that the HMAC implementation did not validate the state of the underlying cryptographic hash algorithm. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-17806) It was discovered that the keyring implementation in the Linux kernel did not properly check permissions when a key request was performed on a tasks
    last seen2020-06-01
    modified2020-06-02
    plugin id108840
    published2018-04-05
    reporterUbuntu Security Notice (C) 2018-2020 Canonical, Inc. / NASL script (C) 2018-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/108840
    titleUbuntu 17.10 : linux-raspi2 vulnerabilities (USN-3617-3)
  • NASL familyPhotonOS Local Security Checks
    NASL idPHOTONOS_PHSA-2017-0050.NASL
    descriptionAn update of [curl,libtiff,linux] packages for PhotonOS has been released.
    last seen2019-02-21
    modified2019-02-07
    plugin id111899
    published2018-08-17
    reporterTenable
    sourcehttps://www.tenable.com/plugins/index.php?view=single&id=111899
    titlePhoton OS 2.0: Curl / Libtiff / Linux PHSA-2017-0050 (deprecated)
  • NASL familyPhotonOS Local Security Checks
    NASL idPHOTONOS_PHSA-2017-0050_CURL.NASL
    descriptionAn update of the curl package has been released.
    last seen2020-03-17
    modified2019-02-07
    plugin id121768
    published2019-02-07
    reporterThis script is Copyright (C) 2019-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/121768
    titlePhoton OS 2.0: Curl PHSA-2017-0050
  • NASL familyFedora Local Security Checks
    NASL idFEDORA_2017-ABDA708CEE.NASL
    descriptionThe 4.13.12 update contains a number of important fixes across the tree. It contains security fixes for CVE-2017-16532 and CVE-2017-16538. Note that Tenable Network Security has extracted the preceding description block directly from the Fedora update system website. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen2020-06-05
    modified2018-01-15
    plugin id105951
    published2018-01-15
    reporterThis script is Copyright (C) 2018-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/105951
    titleFedora 27 : kernel (2017-abda708cee)
  • NASL familyOracle Linux Local Security Checks
    NASL idORACLELINUX_ELSA-2018-4109.NASL
    descriptionThe remote Oracle Linux host is missing a security update for the Unbreakable Enterprise kernel package(s).
    last seen2020-06-01
    modified2020-06-02
    plugin id109829
    published2018-05-16
    reporterThis script is Copyright (C) 2018-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/109829
    titleOracle Linux 6 / 7 : Unbreakable Enterprise kernel (ELSA-2018-4109) (Meltdown) (Spectre)
  • NASL familyHuawei Local Security Checks
    NASL idEULEROS_SA-2017-1292.NASL
    descriptionAccording to the versions of the kernel packages installed, the EulerOS installation on the remote host is affected by the following vulnerabilities : - A vulnerability was found in the key management subsystem of the Linux kernel. An update on an uninstantiated key could cause a kernel panic, leading to denial of service (DoS).(CVE-2017-15299) - It was found that fanout_add() in
    last seen2020-05-06
    modified2017-12-01
    plugin id104911
    published2017-12-01
    reporterThis script is Copyright (C) 2017-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/104911
    titleEulerOS 2.0 SP2 : kernel (EulerOS-SA-2017-1292)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-3617-1.NASL
    descriptionIt was discovered that a race condition leading to a use-after-free vulnerability existed in the ALSA PCM subsystem of the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-0861) It was discovered that the KVM implementation in the Linux kernel allowed passthrough of the diagnostic I/O port 0x80. An attacker in a guest VM could use this to cause a denial of service (system crash) in the host OS. (CVE-2017-1000407) It was discovered that a use-after-free vulnerability existed in the network namespaces implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-15129) Andrey Konovalov discovered that the usbtest device driver in the Linux kernel did not properly validate endpoint metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16532) Andrey Konovalov discovered that the SoundGraph iMON USB driver in the Linux kernel did not properly validate device metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16537) Andrey Konovalov discovered that the IMS Passenger Control Unit USB driver in the Linux kernel did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16645) Andrey Konovalov discovered that the DiBcom DiB0700 USB DVB driver in the Linux kernel did not properly handle detach events. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16646) Andrey Konovalov discovered that the ASIX Ethernet USB driver in the Linux kernel did not properly handle suspend and resume events. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16647) Andrey Konovalov discovered that the CDC USB Ethernet driver did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16649) Andrey Konovalov discovered that the QMI WWAN USB driver did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16650) It was discovered that the HugeTLB component of the Linux kernel did not properly handle holes in hugetlb ranges. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2017-16994) It was discovered that the netfilter component of the Linux did not properly restrict access to the connection tracking helpers list. A local attacker could use this to bypass intended access restrictions. (CVE-2017-17448) It was discovered that the netfilter passive OS fingerprinting (xt_osf) module did not properly perform access control checks. A local attacker could improperly modify the system-wide OS fingerprint list. (CVE-2017-17450) Dmitry Vyukov discovered that the KVM implementation in the Linux kernel contained an out-of-bounds read when handling memory-mapped I/O. A local attacker could use this to expose sensitive information. (CVE-2017-17741) It was discovered that the Salsa20 encryption algorithm implementations in the Linux kernel did not properly handle zero-length inputs. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-17805) It was discovered that the HMAC implementation did not validate the state of the underlying cryptographic hash algorithm. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-17806) It was discovered that the keyring implementation in the Linux kernel did not properly check permissions when a key request was performed on a tasks
    last seen2020-06-01
    modified2020-06-02
    plugin id108834
    published2018-04-04
    reporterUbuntu Security Notice (C) 2018-2020 Canonical, Inc. / NASL script (C) 2018-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/108834
    titleUbuntu 17.10 : linux vulnerabilities (USN-3617-1)
  • NASL familyOracleVM Local Security Checks
    NASL idORACLEVM_OVMSA-2018-0035.NASL
    descriptionThe remote OracleVM system is missing necessary patches to address critical security updates : please see Oracle VM Security Advisory OVMSA-2018-0035 for details.
    last seen2020-06-01
    modified2020-06-02
    plugin id109158
    published2018-04-19
    reporterThis script is Copyright (C) 2018-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/109158
    titleOracleVM 3.4 : Unbreakable / etc (OVMSA-2018-0035) (Dirty COW) (Meltdown) (Spectre)
  • NASL familyPhotonOS Local Security Checks
    NASL idPHOTONOS_PHSA-2017-0050_LIBTIFF.NASL
    descriptionAn update of the libtiff package has been released.
    last seen2020-03-17
    modified2019-02-07
    plugin id121769
    published2019-02-07
    reporterThis script is Copyright (C) 2019-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/121769
    titlePhoton OS 2.0: Libtiff PHSA-2017-0050
  • NASL familyOracle Linux Local Security Checks
    NASL idORACLELINUX_ELSA-2018-4071.NASL
    descriptionThe remote Oracle Linux host is missing a security update for the Unbreakable Enterprise kernel package(s).
    last seen2020-06-01
    modified2020-06-02
    plugin id109156
    published2018-04-19
    reporterThis script is Copyright (C) 2018-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/109156
    titleOracle Linux 6 / 7 : Unbreakable Enterprise kernel (ELSA-2018-4071) (Dirty COW) (Meltdown) (Spectre)
  • NASL familyOracle Linux Local Security Checks
    NASL idORACLELINUX_ELSA-2018-4110.NASL
    descriptionThe remote Oracle Linux host is missing a security update for the Unbreakable Enterprise kernel package(s).
    last seen2020-06-01
    modified2020-06-02
    plugin id109881
    published2018-05-17
    reporterThis script is Copyright (C) 2018-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/109881
    titleOracle Linux 6 : Unbreakable Enterprise kernel (ELSA-2018-4110) (Meltdown) (Spectre)
  • NASL familyPhotonOS Local Security Checks
    NASL idPHOTONOS_PHSA-2017-0049_LINUX.NASL
    descriptionAn update of the linux package has been released.
    last seen2020-03-17
    modified2019-02-07
    plugin id121767
    published2019-02-07
    reporterThis script is Copyright (C) 2019-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/121767
    titlePhoton OS 1.0: Linux PHSA-2017-0049
  • NASL familyFedora Local Security Checks
    NASL idFEDORA_2017-08A350C878.NASL
    descriptionThe 4.13.12 update contains a number of important fixes across the tree. It contains security fixes for CVE-2017-16532 and CVE-2017-16538. Note that Tenable Network Security has extracted the preceding description block directly from the Fedora update system website. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen2020-06-05
    modified2017-11-16
    plugin id104589
    published2017-11-16
    reporterThis script is Copyright (C) 2017-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/104589
    titleFedora 25 : kernel (2017-08a350c878)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-3619-2.NASL
    descriptionUSN-3619-1 fixed vulnerabilities in the Linux kernel for Ubuntu 16.04 LTS. This update provides the corresponding updates for the Linux Hardware Enablement (HWE) kernel from Ubuntu 16.04 LTS for Ubuntu 14.04 LTS. Jann Horn discovered that the Berkeley Packet Filter (BPF) implementation in the Linux kernel improperly performed sign extension in some situations. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16995) It was discovered that a race condition leading to a use-after-free vulnerability existed in the ALSA PCM subsystem of the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-0861) It was discovered that the KVM implementation in the Linux kernel allowed passthrough of the diagnostic I/O port 0x80. An attacker in a guest VM could use this to cause a denial of service (system crash) in the host OS. (CVE-2017-1000407) It was discovered that an information disclosure vulnerability existed in the ACPI implementation of the Linux kernel. A local attacker could use this to expose sensitive information (kernel memory addresses). (CVE-2017-11472) It was discovered that a use-after-free vulnerability existed in the network namespaces implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-15129) It was discovered that the Advanced Linux Sound Architecture (ALSA) subsystem in the Linux kernel contained a use-after-free when handling device removal. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16528) Andrey Konovalov discovered that the usbtest device driver in the Linux kernel did not properly validate endpoint metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16532) Andrey Konovalov discovered that the Conexant cx231xx USB video capture driver in the Linux kernel did not properly validate interface descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16536) Andrey Konovalov discovered that the SoundGraph iMON USB driver in the Linux kernel did not properly validate device metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16537) Andrey Konovalov discovered that the IMS Passenger Control Unit USB driver in the Linux kernel did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16645) Andrey Konovalov discovered that the DiBcom DiB0700 USB DVB driver in the Linux kernel did not properly handle detach events. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16646) Andrey Konovalov discovered that the CDC USB Ethernet driver did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16649) Andrey Konovalov discovered that the QMI WWAN USB driver did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16650) It was discovered that the USB Virtual Host Controller Interface (VHCI) driver in the Linux kernel contained an information disclosure vulnerability. A physically proximate attacker could use this to expose sensitive information (kernel memory). (CVE-2017-16911) It was discovered that the USB over IP implementation in the Linux kernel did not validate endpoint numbers. A remote attacker could use this to cause a denial of service (system crash). (CVE-2017-16912) It was discovered that the USB over IP implementation in the Linux kernel did not properly validate CMD_SUBMIT packets. A remote attacker could use this to cause a denial of service (excessive memory consumption). (CVE-2017-16913) It was discovered that the USB over IP implementation in the Linux kernel contained a NULL pointer dereference error. A remote attacker could use this to cause a denial of service (system crash). (CVE-2017-16914) It was discovered that the HugeTLB component of the Linux kernel did not properly handle holes in hugetlb ranges. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2017-16994) It was discovered that the netfilter component of the Linux did not properly restrict access to the connection tracking helpers list. A local attacker could use this to bypass intended access restrictions. (CVE-2017-17448) It was discovered that the netlink subsystem in the Linux kernel did not properly restrict observations of netlink messages to the appropriate net namespace. A local attacker could use this to expose sensitive information (kernel netlink traffic). (CVE-2017-17449) It was discovered that the netfilter passive OS fingerprinting (xt_osf) module did not properly perform access control checks. A local attacker could improperly modify the system-wide OS fingerprint list. (CVE-2017-17450) It was discovered that the core USB subsystem in the Linux kernel did not validate the number of configurations and interfaces in a device. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-17558) Dmitry Vyukov discovered that the KVM implementation in the Linux kernel contained an out-of-bounds read when handling memory-mapped I/O. A local attacker could use this to expose sensitive information. (CVE-2017-17741) It was discovered that the Salsa20 encryption algorithm implementations in the Linux kernel did not properly handle zero-length inputs. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-17805) It was discovered that the HMAC implementation did not validate the state of the underlying cryptographic hash algorithm. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-17806) It was discovered that the keyring implementation in the Linux kernel did not properly check permissions when a key request was performed on a task
    last seen2020-06-01
    modified2020-06-02
    plugin id108878
    published2018-04-06
    reporterUbuntu Security Notice (C) 2018-2019 Canonical, Inc. / NASL script (C) 2018-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/108878
    titleUbuntu 14.04 LTS : linux-lts-xenial, linux-aws vulnerabilities (USN-3619-2)
  • NASL familyPhotonOS Local Security Checks
    NASL idPHOTONOS_PHSA-2017-0050_LINUX.NASL
    descriptionAn update of the linux package has been released.
    last seen2020-03-17
    modified2019-02-07
    plugin id121770
    published2019-02-07
    reporterThis script is Copyright (C) 2019-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/121770
    titlePhoton OS 2.0: Linux PHSA-2017-0050
  • NASL familyHuawei Local Security Checks
    NASL idEULEROS_SA-2019-1474.NASL
    descriptionAccording to the versions of the kernel packages installed, the EulerOS Virtualization for ARM 64 installation on the remote host is affected by the following vulnerabilities : - The x25_negotiate_facilities function in net/x25/x25_facilities.c in the Linux kernel before 4.5.5 does not properly initialize a certain data structure, which allows attackers to obtain sensitive information from kernel stack memory via an X.25 Call Request.(CVE-2016-4580i1/4%0 - A flaw was found in the Linux kernel
    last seen2020-03-19
    modified2019-05-13
    plugin id124798
    published2019-05-13
    reporterThis script is Copyright (C) 2019-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/124798
    titleEulerOS Virtualization for ARM 64 3.0.1.0 : kernel (EulerOS-SA-2019-1474)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-3619-1.NASL
    descriptionJann Horn discovered that the Berkeley Packet Filter (BPF) implementation in the Linux kernel improperly performed sign extension in some situations. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16995) It was discovered that a race condition leading to a use-after-free vulnerability existed in the ALSA PCM subsystem of the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-0861) It was discovered that the KVM implementation in the Linux kernel allowed passthrough of the diagnostic I/O port 0x80. An attacker in a guest VM could use this to cause a denial of service (system crash) in the host OS. (CVE-2017-1000407) It was discovered that an information disclosure vulnerability existed in the ACPI implementation of the Linux kernel. A local attacker could use this to expose sensitive information (kernel memory addresses). (CVE-2017-11472) It was discovered that a use-after-free vulnerability existed in the network namespaces implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-15129) It was discovered that the Advanced Linux Sound Architecture (ALSA) subsystem in the Linux kernel contained a use-after-free when handling device removal. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16528) Andrey Konovalov discovered that the usbtest device driver in the Linux kernel did not properly validate endpoint metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16532) Andrey Konovalov discovered that the Conexant cx231xx USB video capture driver in the Linux kernel did not properly validate interface descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16536) Andrey Konovalov discovered that the SoundGraph iMON USB driver in the Linux kernel did not properly validate device metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16537) Andrey Konovalov discovered that the IMS Passenger Control Unit USB driver in the Linux kernel did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16645) Andrey Konovalov discovered that the DiBcom DiB0700 USB DVB driver in the Linux kernel did not properly handle detach events. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16646) Andrey Konovalov discovered that the CDC USB Ethernet driver did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16649) Andrey Konovalov discovered that the QMI WWAN USB driver did not properly validate device descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16650) It was discovered that the USB Virtual Host Controller Interface (VHCI) driver in the Linux kernel contained an information disclosure vulnerability. A physically proximate attacker could use this to expose sensitive information (kernel memory). (CVE-2017-16911) It was discovered that the USB over IP implementation in the Linux kernel did not validate endpoint numbers. A remote attacker could use this to cause a denial of service (system crash). (CVE-2017-16912) It was discovered that the USB over IP implementation in the Linux kernel did not properly validate CMD_SUBMIT packets. A remote attacker could use this to cause a denial of service (excessive memory consumption). (CVE-2017-16913) It was discovered that the USB over IP implementation in the Linux kernel contained a NULL pointer dereference error. A remote attacker could use this to cause a denial of service (system crash). (CVE-2017-16914) It was discovered that the HugeTLB component of the Linux kernel did not properly handle holes in hugetlb ranges. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2017-16994) It was discovered that the netfilter component of the Linux did not properly restrict access to the connection tracking helpers list. A local attacker could use this to bypass intended access restrictions. (CVE-2017-17448) It was discovered that the netlink subsystem in the Linux kernel did not properly restrict observations of netlink messages to the appropriate net namespace. A local attacker could use this to expose sensitive information (kernel netlink traffic). (CVE-2017-17449) It was discovered that the netfilter passive OS fingerprinting (xt_osf) module did not properly perform access control checks. A local attacker could improperly modify the system-wide OS fingerprint list. (CVE-2017-17450) It was discovered that the core USB subsystem in the Linux kernel did not validate the number of configurations and interfaces in a device. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-17558) Dmitry Vyukov discovered that the KVM implementation in the Linux kernel contained an out-of-bounds read when handling memory-mapped I/O. A local attacker could use this to expose sensitive information. (CVE-2017-17741) It was discovered that the Salsa20 encryption algorithm implementations in the Linux kernel did not properly handle zero-length inputs. A local attacker could use this to cause a denial of service (system crash). (CVE-2017-17805) It was discovered that the HMAC implementation did not validate the state of the underlying cryptographic hash algorithm. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-17806) It was discovered that the keyring implementation in the Linux kernel did not properly check permissions when a key request was performed on a task
    last seen2020-06-01
    modified2020-06-02
    plugin id108842
    published2018-04-05
    reporterUbuntu Security Notice (C) 2018-2019 Canonical, Inc. / NASL script (C) 2018-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/108842
    titleUbuntu 16.04 LTS : linux, linux-aws, linux-kvm, linux-raspi2, linux-snapdragon vulnerabilities (USN-3619-1)
  • NASL familyHuawei Local Security Checks
    NASL idEULEROS_SA-2019-1499.NASL
    descriptionAccording to the versions of the kernel packages installed, the EulerOS Virtualization installation on the remote host is affected by the following vulnerabilities : - It was found that in the Linux kernel through v4.14-rc5, bio_map_user_iov() and bio_unmap_user() in
    last seen2020-04-03
    modified2019-05-13
    plugin id124822
    published2019-05-13
    reporterThis script is Copyright (C) 2019-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/124822
    titleEulerOS Virtualization 3.0.1.0 : kernel (EulerOS-SA-2019-1499)
  • NASL familyDebian Local Security Checks
    NASL idDEBIAN_DLA-1200.NASL
    descriptionSeveral vulnerabilities have been discovered in the Linux kernel that may lead to a privilege escalation, denial of service or information leaks. CVE-2016-10208 Sergej Schumilo and Ralf Spenneberg discovered that a crafted ext4 filesystem could trigger memory corruption when it is mounted. A user that can provide a device or filesystem image to be mounted could use this for denial of service (crash or data corruption) or possibly for privilege escalation. CVE-2017-8824 Mohamed Ghannam discovered that the DCCP implementation did not correctly manage resources when a socket is disconnected and reconnected, potentially leading to a use-after-free. A local user could use this for denial of service (crash or data corruption) or possibly for privilege escalation. On systems that do not already have the dccp module loaded, this can be mitigated by disabling it: echo >> /etc/modprobe.d/disable-dccp.conf install dccp false CVE-2017-8831 Pengfei Wang discovered that the saa7164 video capture driver re-reads data from a PCI device after validating it. A physically present user able to attach a specially designed PCI device could use this for privilege escalation. CVE-2017-12190 Vitaly Mayatskikh discovered that the block layer did not correctly count page references for raw I/O from user-space. This can be exploited by a guest VM with access to a host SCSI device for denial of service (memory exhaustion) or potentially for privilege escalation. CVE-2017-13080 A vulnerability was found in the WPA2 protocol that could lead to reinstallation of the same Group Temporal Key (GTK), which substantially reduces the security of wifi encryption. This is one of the issues collectively known as
    last seen2020-03-17
    modified2017-12-11
    plugin id105116
    published2017-12-11
    reporterThis script is Copyright (C) 2017-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/105116
    titleDebian DLA-1200-1 : linux security update (KRACK)