Vulnerabilities > CVE-2016-5572 - Permissions, Privileges, and Access Controls vulnerability in Oracle Database 12.1.0.2

047910
CVSS 4.4 - MEDIUM
Attack vector
LOCAL
Attack complexity
MEDIUM
Privileges required
NONE
Confidentiality impact
PARTIAL
Integrity impact
PARTIAL
Availability impact
PARTIAL
local
oracle
CWE-264
nessus

Summary

Unspecified vulnerability in the Kernel PDB component in Oracle Database Server 12.1.0.2 allows local users to affect confidentiality, integrity, and availability via unknown vectors.

Vulnerable Configurations

Part Description Count
Application
Oracle
1

Common Attack Pattern Enumeration and Classification (CAPEC)

  • Accessing, Modifying or Executing Executable Files
    An attack of this type exploits a system's configuration that allows an attacker to either directly access an executable file, for example through shell access; or in a possible worst case allows an attacker to upload a file and then execute it. Web servers, ftp servers, and message oriented middleware systems which have many integration points are particularly vulnerable, because both the programmers and the administrators must be in synch regarding the interfaces and the correct privileges for each interface.
  • Leverage Executable Code in Non-Executable Files
    An attack of this type exploits a system's trust in configuration and resource files, when the executable loads the resource (such as an image file or configuration file) the attacker has modified the file to either execute malicious code directly or manipulate the target process (e.g. application server) to execute based on the malicious configuration parameters. Since systems are increasingly interrelated mashing up resources from local and remote sources the possibility of this attack occurring is high. The attack can be directed at a client system, such as causing buffer overrun through loading seemingly benign image files, as in Microsoft Security Bulletin MS04-028 where specially crafted JPEG files could cause a buffer overrun once loaded into the browser. Another example targets clients reading pdf files. In this case the attacker simply appends javascript to the end of a legitimate url for a pdf (http://www.gnucitizen.org/blog/danger-danger-danger/) http://path/to/pdf/file.pdf#whatever_name_you_want=javascript:your_code_here The client assumes that they are reading a pdf, but the attacker has modified the resource and loaded executable javascript into the client's browser process. The attack can also target server processes. The attacker edits the resource or configuration file, for example a web.xml file used to configure security permissions for a J2EE app server, adding role name "public" grants all users with the public role the ability to use the administration functionality. The server trusts its configuration file to be correct, but when they are manipulated, the attacker gains full control.
  • Blue Boxing
    This type of attack against older telephone switches and trunks has been around for decades. A tone is sent by an adversary to impersonate a supervisor signal which has the effect of rerouting or usurping command of the line. While the US infrastructure proper may not contain widespread vulnerabilities to this type of attack, many companies are connected globally through call centers and business process outsourcing. These international systems may be operated in countries which have not upgraded Telco infrastructure and so are vulnerable to Blue boxing. Blue boxing is a result of failure on the part of the system to enforce strong authorization for administrative functions. While the infrastructure is different than standard current applications like web applications, there are historical lessons to be learned to upgrade the access control for administrative functions.
  • Restful Privilege Elevation
    Rest uses standard HTTP (Get, Put, Delete) style permissions methods, but these are not necessarily correlated generally with back end programs. Strict interpretation of HTTP get methods means that these HTTP Get services should not be used to delete information on the server, but there is no access control mechanism to back up this logic. This means that unless the services are properly ACL'd and the application's service implementation are following these guidelines then an HTTP request can easily execute a delete or update on the server side. The attacker identifies a HTTP Get URL such as http://victimsite/updateOrder, which calls out to a program to update orders on a database or other resource. The URL is not idempotent so the request can be submitted multiple times by the attacker, additionally, the attacker may be able to exploit the URL published as a Get method that actually performs updates (instead of merely retrieving data). This may result in malicious or inadvertent altering of data on the server.
  • Target Programs with Elevated Privileges
    This attack targets programs running with elevated privileges. The attacker would try to leverage a bug in the running program and get arbitrary code to execute with elevated privileges. For instance an attacker would look for programs that write to the system directories or registry keys (such as HKLM, which stores a number of critical Windows environment variables). These programs are typically running with elevated privileges and have usually not been designed with security in mind. Such programs are excellent exploit targets because they yield lots of power when they break. The malicious user try to execute its code at the same level as a privileged system call.

Nessus

NASL familyDatabases
NASL idORACLE_RDBMS_CPU_OCT_2016.NASL
descriptionThe remote Oracle Database Server is missing the October 2016 Critical Patch Update (CPU). It is, therefore, affected by multiple vulnerabilities : - An unspecified flaw exists in the RDBMS Security and SQL*Plus component that allows an authenticated, remote attacker to disclose sensitive information. (CVE-2016-3562) - An unspecified flaw exists in the RDBMS Security component that allows a local attacker to gain elevated privileges. (CVE-2016-5497) - Multiple unspecified flaws exist in the RDBMS Security component that allow a local attacker to disclose sensitive information. (CVE-2016-5498, CVE-2016-5499) - An unspecified flaw exists in the RDBMS Programmable Interface component that allows a local attacker to disclose sensitive information. (CVE-2016-5505) - An unspecified flaw exists in the Kernel PDB component that allows a local attacker to cause a denial of service condition. (CVE-2016-5516) - An unspecified flaw exists in the OJVM component that allows an authenticated, remote attacker to execute arbitrary code. (CVE-2016-5555) - An unspecified flaw exists in the Kernel PDB component that allows a local attacker to gain elevated privileges. (CVE-2016-5572)
last seen2020-06-02
modified2016-10-21
plugin id94201
published2016-10-21
reporterThis script is Copyright (C) 2016-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
sourcehttps://www.tenable.com/plugins/nessus/94201
titleOracle Database Multiple Vulnerabilities (October 2016 CPU)
code
#
# (C) Tenable Network Security, Inc.
#




include("compat.inc");

if (description)
{
  script_id(94201);
  script_version("1.15");
  script_set_attribute(attribute:"plugin_modification_date", value:"2020/06/01");

  script_cve_id(
    "CVE-2016-3562",
    "CVE-2016-5497",
    "CVE-2016-5498",
    "CVE-2016-5499",
    "CVE-2016-5505",
    "CVE-2016-5516",
    "CVE-2016-5555",
    "CVE-2016-5572"
  );
  script_bugtraq_id(
    93613,
    93615,
    93620,
    93626,
    93629,
    93631,
    93634,
    93640
  );

  script_name(english:"Oracle Database Multiple Vulnerabilities (October 2016 CPU)");
  script_summary(english:"Checks the installed patch info.");

  script_set_attribute(attribute:"synopsis", value:
"The remote database server is affected by multiple vulnerabilities.");
  script_set_attribute(attribute:"description", value:
"The remote Oracle Database Server is missing the October 2016 Critical
Patch Update (CPU). It is, therefore, affected by multiple
vulnerabilities :

  - An unspecified flaw exists in the RDBMS Security and
    SQL*Plus component that allows an authenticated, remote
    attacker to disclose sensitive information.
    (CVE-2016-3562)

  - An unspecified flaw exists in the RDBMS Security
    component that allows a local attacker to gain elevated
    privileges. (CVE-2016-5497)

  - Multiple unspecified flaws exist in the RDBMS Security
    component that allow a local attacker to disclose
    sensitive information. (CVE-2016-5498, CVE-2016-5499)

  - An unspecified flaw exists in the RDBMS Programmable
    Interface component that allows a local attacker to
    disclose sensitive information. (CVE-2016-5505)

  - An unspecified flaw exists in the Kernel PDB component
    that allows a local attacker to cause a denial of
    service condition. (CVE-2016-5516)

  - An unspecified flaw exists in the OJVM component that
    allows an authenticated, remote attacker to execute
    arbitrary code. (CVE-2016-5555)

  - An unspecified flaw exists in the Kernel PDB component
    that allows a local attacker to gain elevated
    privileges. (CVE-2016-5572)");
  # http://www.oracle.com/technetwork/security-advisory/cpuoct2016-2881722.html
  script_set_attribute(attribute:"see_also", value:"http://www.nessus.org/u?bac902d5");
  script_set_attribute(attribute:"solution", value:
"Apply the appropriate patch according to the October 2016 Oracle
Critical Patch Update advisory.");
  script_set_cvss_base_vector("CVSS2#AV:N/AC:L/Au:S/C:P/I:P/A:P");
  script_set_cvss_temporal_vector("CVSS2#E:U/RL:OF/RC:C");
  script_set_cvss3_base_vector("CVSS:3.0/AV:N/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H");
  script_set_cvss3_temporal_vector("CVSS:3.0/E:U/RL:O/RC:C");
  script_set_attribute(attribute:"cvss_score_source", value:"CVE-2016-5555");

  script_set_attribute(attribute:"exploitability_ease", value:"No known exploits are available");
  script_set_attribute(attribute:"exploit_available", value:"false");

  script_set_attribute(attribute:"vuln_publication_date", value:"2016/10/18");
  script_set_attribute(attribute:"patch_publication_date", value:"2016/10/18");
  script_set_attribute(attribute:"plugin_publication_date", value:"2016/10/21");

  script_set_attribute(attribute:"plugin_type", value:"combined");
  script_set_attribute(attribute:"cpe", value:"cpe:/a:oracle:database_server");
  script_set_attribute(attribute:"agent", value:"all");
  script_end_attributes();

  script_category(ACT_GATHER_INFO);
  script_family(english:"Databases");

  script_copyright(english:"This script is Copyright (C) 2016-2020 and is owned by Tenable, Inc. or an Affiliate thereof.");

  script_dependencies("oracle_rdbms_query_patch_info.nbin", "oracle_rdbms_patch_info.nbin");

  exit(0);
}

include("oracle_rdbms_cpu_func.inc");

################################################################################
# OCT2016
patches = make_nested_array();

# RDBMS 12.1.0.2
patches["12.1.0.2"]["db"]["nix"] = make_array("patch_level", "12.1.0.2.161018", "CPU", "24006101, 24448103");
patches["12.1.0.2"]["db"]["win"] = make_array("patch_level", "12.1.0.2.161018", "CPU", "24591642");
# RDBMS 11.2.0.4 #
patches["11.2.0.4"]["db"]["nix"] = make_array("patch_level", "11.2.0.4.161018", "CPU", "24433711, 24006111");
patches["11.2.0.4"]["db"]["win"] = make_array("patch_level", "11.2.0.4.161018", "CPU", "24591646");

# JVM 12.1.0.2
patches["12.1.0.2"]["ojvm"]["nix"] = make_array("patch_level", "12.1.0.2.161018", "CPU", "24315824");
patches["12.1.0.2"]["ojvm"]["win"] = make_array("patch_level", "12.1.0.2.161018", "CPU", "24591630");
# JVM 11.2.0.4
patches["11.2.0.4"]["ojvm"]["nix"] = make_array("patch_level", "11.2.0.4.161018", "CPU", "24315821");
patches["11.2.0.4"]["ojvm"]["win"] = make_array("patch_level", "11.2.0.4.161018", "CPU", "24591637");

check_oracle_database(patches:patches);