Vulnerabilities > CVE-2011-1494 - Numeric Errors vulnerability in Linux Kernel

047910
CVSS 0.0 - NONE
Attack vector
UNKNOWN
Attack complexity
UNKNOWN
Privileges required
UNKNOWN
Confidentiality impact
UNKNOWN
Integrity impact
UNKNOWN
Availability impact
UNKNOWN

Summary

Integer overflow in the _ctl_do_mpt_command function in drivers/scsi/mpt2sas/mpt2sas_ctl.c in the Linux kernel 2.6.38 and earlier might allow local users to gain privileges or cause a denial of service (memory corruption) via an ioctl call specifying a crafted value that triggers a heap-based buffer overflow.

Vulnerable Configurations

Part Description Count
OS
Linux
4071

Common Weakness Enumeration (CWE)

Nessus

  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1168-1.NASL
    descriptionTimo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090) Timo Warns discovered that OSF partition parsing routines did not correctly clear memory. A local attacker with physical access could plug in a specially crafted block device to read kernel memory, leading to a loss of privacy. (CVE-2011-1163) Dan Rosenberg discovered that MPT devices did not correctly validate certain values in ioctl calls. If these drivers were loaded, a local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2011-1494, CVE-2011-1495) Tavis Ormandy discovered that the pidmap function did not correctly handle large requests. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1593) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598, CVE-2011-1748) Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl values. A local attacker with access to the video subsystem could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-1745, CVE-2011-2022) Vasiliy Kulikov discovered that the AGP driver did not check the size of certain memory allocations. A local attacker with access to the video subsystem could exploit this to run the system out of memory, leading to a denial of service. (CVE-2011-1746) Dan Rosenberg reported an error in the old ABI compatibility layer of ARM kernels. A local attacker could exploit this flaw to cause a denial of service or gain root privileges. (CVE-2011-1759) Dan Rosenberg discovered that the DCCP stack did not correctly handle certain packet structures. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1770) Timo Warns discovered that the EFI GUID partition table was not correctly parsed. A physically local attacker that could insert mountable devices could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1776) Yogesh Sharma discovered that CIFS did not correctly handle UNCs that had no prefixpaths. A local attacker with access to a CIFS partition could exploit this to crash the system, leading to a denial of service. (CVE-2011-3363). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen2020-06-01
    modified2020-06-02
    plugin id55606
    published2011-07-18
    reporterUbuntu Security Notice (C) 2011-2019 Canonical, Inc. / NASL script (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/55606
    titleUbuntu 10.04 LTS : linux vulnerabilities (USN-1168-1)
    code
    #
    # (C) Tenable Network Security, Inc.
    #
    # The descriptive text and package checks in this plugin were
    # extracted from Ubuntu Security Notice USN-1168-1. The text 
    # itself is copyright (C) Canonical, Inc. See 
    # <http://www.ubuntu.com/usn/>. Ubuntu(R) is a registered 
    # trademark of Canonical, Inc.
    #
    
    include("compat.inc");
    
    if (description)
    {
      script_id(55606);
      script_version("1.11");
      script_cvs_date("Date: 2019/09/19 12:54:27");
    
      script_cve_id("CVE-2011-1017", "CVE-2011-1090", "CVE-2011-1163", "CVE-2011-1494", "CVE-2011-1495", "CVE-2011-1593", "CVE-2011-1598", "CVE-2011-1745", "CVE-2011-1746", "CVE-2011-1747", "CVE-2011-1748", "CVE-2011-1759", "CVE-2011-1770", "CVE-2011-1776", "CVE-2011-2022", "CVE-2011-3363");
      script_bugtraq_id(46512, 46766, 46878, 47185, 47497, 47503, 47534, 47535, 47769, 47832, 47835, 47843);
      script_xref(name:"USN", value:"1168-1");
    
      script_name(english:"Ubuntu 10.04 LTS : linux vulnerabilities (USN-1168-1)");
      script_summary(english:"Checks dpkg output for updated packages.");
    
      script_set_attribute(
        attribute:"synopsis", 
        value:
    "The remote Ubuntu host is missing one or more security-related
    patches."
      );
      script_set_attribute(
        attribute:"description", 
        value:
    "Timo Warns discovered that the LDM disk partition handling code did
    not correctly handle certain values. By inserting a specially crafted
    disk device, a local attacker could exploit this to gain root
    privileges. (CVE-2011-1017)
    
    Neil Horman discovered that NFSv4 did not correctly handle certain
    orders of operation with ACL data. A remote attacker with access to an
    NFSv4 mount could exploit this to crash the system, leading to a
    denial of service. (CVE-2011-1090)
    
    Timo Warns discovered that OSF partition parsing routines did not
    correctly clear memory. A local attacker with physical access could
    plug in a specially crafted block device to read kernel memory,
    leading to a loss of privacy. (CVE-2011-1163)
    
    Dan Rosenberg discovered that MPT devices did not correctly validate
    certain values in ioctl calls. If these drivers were loaded, a local
    attacker could exploit this to read arbitrary kernel memory, leading
    to a loss of privacy. (CVE-2011-1494, CVE-2011-1495)
    
    Tavis Ormandy discovered that the pidmap function did not correctly
    handle large requests. A local attacker could exploit this to crash
    the system, leading to a denial of service. (CVE-2011-1593)
    
    Oliver Hartkopp and Dave Jones discovered that the CAN network driver
    did not correctly validate certain socket structures. If this driver
    was loaded, a local attacker could crash the system, leading to a
    denial of service. (CVE-2011-1598, CVE-2011-1748)
    
    Vasiliy Kulikov discovered that the AGP driver did not check certain
    ioctl values. A local attacker with access to the video subsystem
    could exploit this to crash the system, leading to a denial of
    service, or possibly gain root privileges. (CVE-2011-1745,
    CVE-2011-2022)
    
    Vasiliy Kulikov discovered that the AGP driver did not check the size
    of certain memory allocations. A local attacker with access to the
    video subsystem could exploit this to run the system out of memory,
    leading to a denial of service. (CVE-2011-1746)
    
    Dan Rosenberg reported an error in the old ABI compatibility layer of
    ARM kernels. A local attacker could exploit this flaw to cause a
    denial of service or gain root privileges. (CVE-2011-1759)
    
    Dan Rosenberg discovered that the DCCP stack did not correctly handle
    certain packet structures. A remote attacker could exploit this to
    crash the system, leading to a denial of service. (CVE-2011-1770)
    
    Timo Warns discovered that the EFI GUID partition table was not
    correctly parsed. A physically local attacker that could insert
    mountable devices could exploit this to crash the system or possibly
    gain root privileges. (CVE-2011-1776)
    
    Yogesh Sharma discovered that CIFS did not correctly handle UNCs that
    had no prefixpaths. A local attacker with access to a CIFS partition
    could exploit this to crash the system, leading to a denial of
    service. (CVE-2011-3363).
    
    Note that Tenable Network Security has extracted the preceding
    description block directly from the Ubuntu security advisory. Tenable
    has attempted to automatically clean and format it as much as possible
    without introducing additional issues."
      );
      script_set_attribute(
        attribute:"see_also",
        value:"https://usn.ubuntu.com/1168-1/"
      );
      script_set_attribute(attribute:"solution", value:"Update the affected packages.");
      script_set_cvss_base_vector("CVSS2#AV:N/AC:L/Au:N/C:N/I:N/A:C");
      script_set_cvss_temporal_vector("CVSS2#E:ND/RL:OF/RC:ND");
      script_set_attribute(attribute:"exploitability_ease", value:"No known exploits are available");
      script_set_attribute(attribute:"exploit_available", value:"false");
    
      script_set_attribute(attribute:"plugin_type", value:"local");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-386");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-generic");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-generic-pae");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-lpia");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-preempt");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-server");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-versatile");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-virtual");
      script_set_attribute(attribute:"cpe", value:"cpe:/o:canonical:ubuntu_linux:10.04:-:lts");
    
      script_set_attribute(attribute:"vuln_publication_date", value:"2011/03/01");
      script_set_attribute(attribute:"patch_publication_date", value:"2011/07/15");
      script_set_attribute(attribute:"plugin_publication_date", value:"2011/07/18");
      script_set_attribute(attribute:"generated_plugin", value:"current");
      script_end_attributes();
    
      script_category(ACT_GATHER_INFO);
      script_copyright(english:"Ubuntu Security Notice (C) 2011-2019 Canonical, Inc. / NASL script (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.");
      script_family(english:"Ubuntu Local Security Checks");
    
      script_dependencies("ssh_get_info.nasl", "linux_alt_patch_detect.nasl");
      script_require_keys("Host/cpu", "Host/Ubuntu", "Host/Ubuntu/release", "Host/Debian/dpkg-l");
    
      exit(0);
    }
    
    
    include("audit.inc");
    include("ubuntu.inc");
    include("ksplice.inc");
    
    if ( ! get_kb_item("Host/local_checks_enabled") ) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED);
    release = get_kb_item("Host/Ubuntu/release");
    if ( isnull(release) ) audit(AUDIT_OS_NOT, "Ubuntu");
    release = chomp(release);
    if (! preg(pattern:"^(10\.04)$", string:release)) audit(AUDIT_OS_NOT, "Ubuntu 10.04", "Ubuntu " + release);
    if ( ! get_kb_item("Host/Debian/dpkg-l") ) audit(AUDIT_PACKAGE_LIST_MISSING);
    
    cpu = get_kb_item("Host/cpu");
    if (isnull(cpu)) audit(AUDIT_UNKNOWN_ARCH);
    if ("x86_64" >!< cpu && cpu !~ "^i[3-6]86$") audit(AUDIT_LOCAL_CHECKS_NOT_IMPLEMENTED, "Ubuntu", cpu);
    
    if (get_one_kb_item("Host/ksplice/kernel-cves"))
    {
      rm_kb_item(name:"Host/uptrack-uname-r");
      cve_list = make_list("CVE-2011-1017", "CVE-2011-1090", "CVE-2011-1163", "CVE-2011-1494", "CVE-2011-1495", "CVE-2011-1593", "CVE-2011-1598", "CVE-2011-1745", "CVE-2011-1746", "CVE-2011-1747", "CVE-2011-1748", "CVE-2011-1759", "CVE-2011-1770", "CVE-2011-1776", "CVE-2011-2022", "CVE-2011-3363");
      if (ksplice_cves_check(cve_list))
      {
        audit(AUDIT_PATCH_INSTALLED, "KSplice hotfix for USN-1168-1");
      }
      else
      {
        _ubuntu_report = ksplice_reporting_text();
      }
    }
    
    flag = 0;
    
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-33-386", pkgver:"2.6.32-33.70")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-33-generic", pkgver:"2.6.32-33.70")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-33-generic-pae", pkgver:"2.6.32-33.70")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-33-lpia", pkgver:"2.6.32-33.70")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-33-preempt", pkgver:"2.6.32-33.70")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-33-server", pkgver:"2.6.32-33.70")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-33-versatile", pkgver:"2.6.32-33.70")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-33-virtual", pkgver:"2.6.32-33.70")) flag++;
    
    if (flag)
    {
      security_report_v4(
        port       : 0,
        severity   : SECURITY_HOLE,
        extra      : ubuntu_report_get()
      );
      exit(0);
    }
    else
    {
      tested = ubuntu_pkg_tests_get();
      if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested);
      else audit(AUDIT_PACKAGE_NOT_INSTALLED, "linux-image-2.6-386 / linux-image-2.6-generic / etc");
    }
    
  • NASL familyFedora Local Security Checks
    NASL idFEDORA_2011-6541.NASL
    descriptionUpdate to kernel 2.6.35.13 : http://ftp.kernel.org/pub/linux/kernel/v2.6/longterm/v2.6.35/ChangeLog -2.6.35.13 Plus additional security fixes that will appear in 2.6.35.14 Note that Tenable Network Security has extracted the preceding description block directly from the Fedora security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen2020-06-01
    modified2020-06-02
    plugin id53850
    published2011-05-10
    reporterThis script is Copyright (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/53850
    titleFedora 14 : kernel-2.6.35.13-91.fc14 (2011-6541)
    code
    #%NASL_MIN_LEVEL 80502
    #
    # (C) Tenable Network Security, Inc.
    #
    # The descriptive text and package checks in this plugin were  
    # extracted from Fedora Security Advisory 2011-6541.
    #
    
    include("compat.inc");
    
    if (description)
    {
      script_id(53850);
      script_version("1.12");
      script_cvs_date("Date: 2019/08/02 13:32:35");
    
      script_cve_id("CVE-2011-1079", "CVE-2011-1478", "CVE-2011-1494", "CVE-2011-1495", "CVE-2011-1745", "CVE-2011-1746");
      script_bugtraq_id(46616, 47056, 47185, 47534, 47535);
      script_xref(name:"FEDORA", value:"2011-6541");
    
      script_name(english:"Fedora 14 : kernel-2.6.35.13-91.fc14 (2011-6541)");
      script_summary(english:"Checks rpm output for the updated package.");
    
      script_set_attribute(
        attribute:"synopsis", 
        value:"The remote Fedora host is missing a security update."
      );
      script_set_attribute(
        attribute:"description", 
        value:
    "Update to kernel 2.6.35.13 :
    
    http://ftp.kernel.org/pub/linux/kernel/v2.6/longterm/v2.6.35/ChangeLog
    -2.6.35.13
    
    Plus additional security fixes that will appear in 2.6.35.14
    
    Note that Tenable Network Security has extracted the preceding
    description block directly from the Fedora security advisory. Tenable
    has attempted to automatically clean and format it as much as possible
    without introducing additional issues."
      );
      # http://ftp.kernel.org/pub/linux/kernel/v2.6/longterm/v2.6.35/ChangeLog-2.6.35.13
      script_set_attribute(
        attribute:"see_also",
        value:"http://www.nessus.org/u?32ba0551"
      );
      script_set_attribute(
        attribute:"see_also",
        value:"https://bugzilla.redhat.com/show_bug.cgi?id=681260"
      );
      script_set_attribute(
        attribute:"see_also",
        value:"https://bugzilla.redhat.com/show_bug.cgi?id=691270"
      );
      script_set_attribute(
        attribute:"see_also",
        value:"https://bugzilla.redhat.com/show_bug.cgi?id=694021"
      );
      script_set_attribute(
        attribute:"see_also",
        value:"https://bugzilla.redhat.com/show_bug.cgi?id=698996"
      );
      script_set_attribute(
        attribute:"see_also",
        value:"https://bugzilla.redhat.com/show_bug.cgi?id=698998"
      );
      # https://lists.fedoraproject.org/pipermail/package-announce/2011-May/059860.html
      script_set_attribute(
        attribute:"see_also",
        value:"http://www.nessus.org/u?b0649555"
      );
      script_set_attribute(
        attribute:"solution", 
        value:"Update the affected kernel package."
      );
      script_set_cvss_base_vector("CVSS2#AV:L/AC:L/Au:N/C:C/I:C/A:C");
      script_set_cvss_temporal_vector("CVSS2#E:U/RL:OF/RC:C");
      script_set_attribute(attribute:"exploitability_ease", value:"No known exploits are available");
      script_set_attribute(attribute:"exploit_available", value:"false");
    
      script_set_attribute(attribute:"plugin_type", value:"local");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:fedoraproject:fedora:kernel");
      script_set_attribute(attribute:"cpe", value:"cpe:/o:fedoraproject:fedora:14");
    
      script_set_attribute(attribute:"patch_publication_date", value:"2011/05/05");
      script_set_attribute(attribute:"plugin_publication_date", value:"2011/05/10");
      script_end_attributes();
    
      script_category(ACT_GATHER_INFO);
      script_copyright(english:"This script is Copyright (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.");
      script_family(english:"Fedora Local Security Checks");
    
      script_dependencies("ssh_get_info.nasl");
      script_require_keys("Host/local_checks_enabled", "Host/RedHat/release", "Host/RedHat/rpm-list");
    
      exit(0);
    }
    
    
    include("audit.inc");
    include("global_settings.inc");
    include("rpm.inc");
    
    if (!get_kb_item("Host/local_checks_enabled")) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED);
    release = get_kb_item("Host/RedHat/release");
    if (isnull(release) || "Fedora" >!< release) audit(AUDIT_OS_NOT, "Fedora");
    os_ver = eregmatch(pattern: "Fedora.*release ([0-9]+)", string:release);
    if (isnull(os_ver)) audit(AUDIT_UNKNOWN_APP_VER, "Fedora");
    os_ver = os_ver[1];
    if (! ereg(pattern:"^14([^0-9]|$)", string:os_ver)) audit(AUDIT_OS_NOT, "Fedora 14.x", "Fedora " + os_ver);
    
    if (!get_kb_item("Host/RedHat/rpm-list")) audit(AUDIT_PACKAGE_LIST_MISSING);
    
    cpu = get_kb_item("Host/cpu");
    if (isnull(cpu)) audit(AUDIT_UNKNOWN_ARCH);
    if ("x86_64" >!< cpu && cpu !~ "^i[3-6]86$") audit(AUDIT_LOCAL_CHECKS_NOT_IMPLEMENTED, "Fedora", cpu);
    
    flag = 0;
    if (rpm_check(release:"FC14", reference:"kernel-2.6.35.13-91.fc14")) flag++;
    
    
    if (flag)
    {
      if (report_verbosity > 0) security_hole(port:0, extra:rpm_report_get());
      else security_hole(0);
      exit(0);
    }
    else
    {
      tested = pkg_tests_get();
      if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested);
      else audit(AUDIT_PACKAGE_NOT_INSTALLED, "kernel");
    }
    
  • NASL familyOracle Linux Local Security Checks
    NASL idORACLELINUX_ELSA-2011-2016.NASL
    descriptionDescription of changes: [2.6.32-100.28.17.el6] - [net] Extend prot->slab size when add sock extend fields. [2.6.32-100.28.16.el6] - kernel: Fix unlimited socket backlog DoS {CVE-2010-4251} - RDS: Fix congestion issues for loopback - rds: prevent BUG_ON triggering on congestion map updates {CVE-2011-1023} - epoll: prevent creating circular epoll structures {CVE-2011-1082} - fs: fix corrupted OSF partition table parsing {CVE-2011-1163} - fs: Increase OSF partition limit from 8 to 18 {CVE-2011-1163} - netfilter: arp_tables: fix infoleak to userspace {CVE-2011-1170} - netfilter: ip_tables: fix infoleak to userspace {CVE-2011-1171} - ipv6: netfilter: ip6_tables: fix infoleak to userspace {CVE-2011-1172} - [SCSI] mpt2sas: prevent heap overflows and unchecked reads {CVE-2011-1494, CVE-2011-1495}
    last seen2020-06-01
    modified2020-06-02
    plugin id68417
    published2013-07-12
    reporterThis script is Copyright (C) 2013-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/68417
    titleOracle Linux 5 / 6 : Unbreakable Enterprise kernel (ELSA-2011-2016)
    code
    #%NASL_MIN_LEVEL 80502
    #
    # (C) Tenable Network Security, Inc.
    #
    # The descriptive text and package checks in this plugin were
    # extracted from Oracle Linux Security Advisory ELSA-2011-2016.
    #
    
    include("compat.inc");
    
    if (description)
    {
      script_id(68417);
      script_version("1.12");
      script_cvs_date("Date: 2019/10/25 13:36:09");
    
      script_cve_id("CVE-2010-4251", "CVE-2011-1023", "CVE-2011-1082", "CVE-2011-1163", "CVE-2011-1170", "CVE-2011-1171", "CVE-2011-1172", "CVE-2011-1494", "CVE-2011-1495");
    
      script_name(english:"Oracle Linux 5 / 6 : Unbreakable Enterprise kernel (ELSA-2011-2016)");
      script_summary(english:"Checks rpm output for the updated packages");
    
      script_set_attribute(
        attribute:"synopsis", 
        value:"The remote Oracle Linux host is missing one or more security updates."
      );
      script_set_attribute(
        attribute:"description", 
        value:
    "Description of changes:
    
    [2.6.32-100.28.17.el6]
    - [net] Extend prot->slab size when add sock extend fields.
    
    [2.6.32-100.28.16.el6]
    - kernel: Fix unlimited socket backlog DoS {CVE-2010-4251}
    - RDS: Fix congestion issues for loopback
    - rds: prevent BUG_ON triggering on congestion map updates {CVE-2011-1023}
    - epoll: prevent creating circular epoll structures {CVE-2011-1082}
    - fs: fix corrupted OSF partition table parsing {CVE-2011-1163}
    - fs: Increase OSF partition limit from 8 to 18 {CVE-2011-1163}
    - netfilter: arp_tables: fix infoleak to userspace {CVE-2011-1170}
    - netfilter: ip_tables: fix infoleak to userspace {CVE-2011-1171}
    - ipv6: netfilter: ip6_tables: fix infoleak to userspace {CVE-2011-1172}
    - [SCSI] mpt2sas: prevent heap overflows and unchecked reads 
    {CVE-2011-1494, CVE-2011-1495}"
      );
      script_set_attribute(
        attribute:"see_also",
        value:"https://oss.oracle.com/pipermail/el-errata/2011-May/002147.html"
      );
      script_set_attribute(
        attribute:"see_also",
        value:"https://oss.oracle.com/pipermail/el-errata/2011-May/002148.html"
      );
      script_set_attribute(
        attribute:"solution", 
        value:"Update the affected unbreakable enterprise kernel packages."
      );
      script_set_cvss_base_vector("CVSS2#AV:L/AC:L/Au:N/C:C/I:C/A:C");
    
      script_set_attribute(attribute:"plugin_type", value:"local");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:oracle:linux:kernel-uek");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:oracle:linux:kernel-uek-debug");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:oracle:linux:kernel-uek-debug-devel");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:oracle:linux:kernel-uek-devel");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:oracle:linux:kernel-uek-doc");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:oracle:linux:kernel-uek-firmware");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:oracle:linux:kernel-uek-headers");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:oracle:linux:ofa-2.6.32-100.28.17.el5");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:oracle:linux:ofa-2.6.32-100.28.17.el5debug");
      script_set_attribute(attribute:"cpe", value:"cpe:/o:oracle:linux:5");
      script_set_attribute(attribute:"cpe", value:"cpe:/o:oracle:linux:6");
    
      script_set_attribute(attribute:"vuln_publication_date", value:"2011/04/04");
      script_set_attribute(attribute:"patch_publication_date", value:"2011/05/24");
      script_set_attribute(attribute:"plugin_publication_date", value:"2013/07/12");
      script_set_attribute(attribute:"generated_plugin", value:"current");
      script_end_attributes();
    
      script_category(ACT_GATHER_INFO);
      script_copyright(english:"This script is Copyright (C) 2013-2019 and is owned by Tenable, Inc. or an Affiliate thereof.");
      script_family(english:"Oracle Linux Local Security Checks");
    
      script_dependencies("ssh_get_info.nasl", "linux_alt_patch_detect.nasl");
      script_require_keys("Host/local_checks_enabled", "Host/OracleLinux", "Host/RedHat/release", "Host/RedHat/rpm-list");
    
      exit(0);
    }
    
    
    include("audit.inc");
    include("global_settings.inc");
    include("rpm.inc");
    include("ksplice.inc");
    
    
    if (!get_kb_item("Host/local_checks_enabled")) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED);
    if (!get_kb_item("Host/OracleLinux")) audit(AUDIT_OS_NOT, "Oracle Linux");
    release = get_kb_item("Host/RedHat/release");
    if (isnull(release) || !pregmatch(pattern: "Oracle (?:Linux Server|Enterprise Linux)", string:release)) audit(AUDIT_OS_NOT, "Oracle Linux");
    os_ver = pregmatch(pattern: "Oracle (?:Linux Server|Enterprise Linux) .*release ([0-9]+(\.[0-9]+)?)", string:release);
    if (isnull(os_ver)) audit(AUDIT_UNKNOWN_APP_VER, "Oracle Linux");
    os_ver = os_ver[1];
    if (! preg(pattern:"^(5|6)([^0-9]|$)", string:os_ver)) audit(AUDIT_OS_NOT, "Oracle Linux 5 / 6", "Oracle Linux " + os_ver);
    
    if (!get_kb_item("Host/RedHat/rpm-list")) audit(AUDIT_PACKAGE_LIST_MISSING);
    
    cpu = get_kb_item("Host/cpu");
    if (isnull(cpu)) audit(AUDIT_UNKNOWN_ARCH);
    if ("x86_64" >!< cpu && "ia64" >!< cpu && cpu !~ "^i[3-6]86$") audit(AUDIT_LOCAL_CHECKS_NOT_IMPLEMENTED, "Oracle Linux", cpu);
    if ("x86_64" >!< cpu) audit(AUDIT_ARCH_NOT, "x86_64", cpu);
    
    if (get_one_kb_item("Host/ksplice/kernel-cves"))
    {
      rm_kb_item(name:"Host/uptrack-uname-r");
      cve_list = make_list("CVE-2010-4251", "CVE-2011-1023", "CVE-2011-1082", "CVE-2011-1163", "CVE-2011-1170", "CVE-2011-1171", "CVE-2011-1172", "CVE-2011-1494", "CVE-2011-1495");  
      if (ksplice_cves_check(cve_list))
      {
        audit(AUDIT_PATCH_INSTALLED, "KSplice hotfix for ELSA-2011-2016");
      }
      else
      {
        __rpm_report = ksplice_reporting_text();
      }
    }
    
    kernel_major_minor = get_kb_item("Host/uname/major_minor");
    if (empty_or_null(kernel_major_minor)) exit(1, "Unable to determine kernel major-minor level.");
    expected_kernel_major_minor = "2.6";
    if (kernel_major_minor != expected_kernel_major_minor)
      audit(AUDIT_OS_NOT, "running kernel level " + expected_kernel_major_minor + ", it is running kernel level " + kernel_major_minor);
    
    flag = 0;
    if (rpm_exists(release:"EL5", rpm:"kernel-uek-2.6.32") && rpm_check(release:"EL5", cpu:"x86_64", reference:"kernel-uek-2.6.32-100.28.17.el5")) flag++;
    if (rpm_exists(release:"EL5", rpm:"kernel-uek-debug-2.6.32") && rpm_check(release:"EL5", cpu:"x86_64", reference:"kernel-uek-debug-2.6.32-100.28.17.el5")) flag++;
    if (rpm_exists(release:"EL5", rpm:"kernel-uek-debug-devel-2.6.32") && rpm_check(release:"EL5", cpu:"x86_64", reference:"kernel-uek-debug-devel-2.6.32-100.28.17.el5")) flag++;
    if (rpm_exists(release:"EL5", rpm:"kernel-uek-devel-2.6.32") && rpm_check(release:"EL5", cpu:"x86_64", reference:"kernel-uek-devel-2.6.32-100.28.17.el5")) flag++;
    if (rpm_exists(release:"EL5", rpm:"kernel-uek-doc-2.6.32") && rpm_check(release:"EL5", cpu:"x86_64", reference:"kernel-uek-doc-2.6.32-100.28.17.el5")) flag++;
    if (rpm_exists(release:"EL5", rpm:"kernel-uek-firmware-2.6.32") && rpm_check(release:"EL5", cpu:"x86_64", reference:"kernel-uek-firmware-2.6.32-100.28.17.el5")) flag++;
    if (rpm_exists(release:"EL5", rpm:"kernel-uek-headers-2.6.32") && rpm_check(release:"EL5", cpu:"x86_64", reference:"kernel-uek-headers-2.6.32-100.28.17.el5")) flag++;
    if (rpm_check(release:"EL5", cpu:"x86_64", reference:"ofa-2.6.32-100.28.17.el5-1.5.1-4.0.28")) flag++;
    if (rpm_check(release:"EL5", cpu:"x86_64", reference:"ofa-2.6.32-100.28.17.el5debug-1.5.1-4.0.28")) flag++;
    
    if (rpm_exists(release:"EL6", rpm:"kernel-uek-2.6.32") && rpm_check(release:"EL6", cpu:"x86_64", reference:"kernel-uek-2.6.32-100.28.17.el6")) flag++;
    if (rpm_exists(release:"EL6", rpm:"kernel-uek-debug-2.6.32") && rpm_check(release:"EL6", cpu:"x86_64", reference:"kernel-uek-debug-2.6.32-100.28.17.el6")) flag++;
    if (rpm_exists(release:"EL6", rpm:"kernel-uek-debug-devel-2.6.32") && rpm_check(release:"EL6", cpu:"x86_64", reference:"kernel-uek-debug-devel-2.6.32-100.28.17.el6")) flag++;
    if (rpm_exists(release:"EL6", rpm:"kernel-uek-devel-2.6.32") && rpm_check(release:"EL6", cpu:"x86_64", reference:"kernel-uek-devel-2.6.32-100.28.17.el6")) flag++;
    if (rpm_exists(release:"EL6", rpm:"kernel-uek-doc-2.6.32") && rpm_check(release:"EL6", cpu:"x86_64", reference:"kernel-uek-doc-2.6.32-100.28.17.el6")) flag++;
    if (rpm_exists(release:"EL6", rpm:"kernel-uek-firmware-2.6.32") && rpm_check(release:"EL6", cpu:"x86_64", reference:"kernel-uek-firmware-2.6.32-100.28.17.el6")) flag++;
    if (rpm_exists(release:"EL6", rpm:"kernel-uek-headers-2.6.32") && rpm_check(release:"EL6", cpu:"x86_64", reference:"kernel-uek-headers-2.6.32-100.28.17.el6")) flag++;
    
    
    if (flag)
    {
      if (report_verbosity > 0) security_hole(port:0, extra:rpm_report_get());
      else security_hole(0);
      exit(0);
    }
    else
    {
      tested = pkg_tests_get();
      if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested);
      else audit(AUDIT_PACKAGE_NOT_INSTALLED, "affected kernel");
    }
    
  • NASL familyMisc.
    NASL idVMWARE_VMSA-2012-0001_REMOTE.NASL
    descriptionThe remote VMware ESX / ESXi host is missing a security-related patch. It is, therefore, affected by multiple vulnerabilities, including remote code execution vulnerabilities, in several third-party libraries : - COS kernel - cURL - python - rpm
    last seen2020-06-01
    modified2020-06-02
    plugin id89105
    published2016-03-03
    reporterThis script is Copyright (C) 2016-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/89105
    titleVMware ESX / ESXi Service Console and Third-Party Libraries Multiple Vulnerabilities (VMSA-2012-0001) (remote check)
  • NASL familySuSE Local Security Checks
    NASL idSUSE_SU-2015-0812-1.NASL
    descriptionThe SUSE Linux Enterprise 10 SP4 LTSS kernel was updated to receive various security and bugfixes. The following security bugs have been fixed : CVE-2015-2041: A information leak in the llc2_timeout_table was fixed (bnc#919007). CVE-2014-9322: arch/x86/kernel/entry_64.S in the Linux kernel did not properly handle faults associated with the Stack Segment (SS) segment register, which allowed local users to gain privileges by triggering an IRET instruction that leads to access to a GS Base address from the wrong space (bnc#910251). CVE-2014-9090: The do_double_fault function in arch/x86/kernel/traps.c in the Linux kernel did not properly handle faults associated with the Stack Segment (SS) segment register, which allowed local users to cause a denial of service (panic) via a modify_ldt system call, as demonstrated by sigreturn_32 in the 1-clock-tests test suite (bnc#907818). CVE-2014-4667: The sctp_association_free function in net/sctp/associola.c in the Linux kernel did not properly manage a certain backlog value, which allowed remote attackers to cause a denial of service (socket outage) via a crafted SCTP packet (bnc#885422). CVE-2014-3673: The SCTP implementation in the Linux kernel allowed remote attackers to cause a denial of service (system crash) via a malformed ASCONF chunk, related to net/sctp/sm_make_chunk.c and net/sctp/sm_statefuns.c (bnc#902346). CVE-2014-3185: Multiple buffer overflows in the command_port_read_callback function in drivers/usb/serial/whiteheat.c in the Whiteheat USB Serial Driver in the Linux kernel allowed physically proximate attackers to execute arbitrary code or cause a denial of service (memory corruption and system crash) via a crafted device that provides a large amount of (1) EHCI or (2) XHCI data associated with a bulk response (bnc#896391). CVE-2014-3184: The report_fixup functions in the HID subsystem in the Linux kernel might have allowed physically proximate attackers to cause a denial of service (out-of-bounds write) via a crafted device that provides a small report descriptor, related to (1) drivers/hid/hid-cherry.c, (2) drivers/hid/hid-kye.c, (3) drivers/hid/hid-lg.c, (4) drivers/hid/hid-monterey.c, (5) drivers/hid/hid-petalynx.c, and (6) drivers/hid/hid-sunplus.c (bnc#896390). CVE-2014-1874: The security_context_to_sid_core function in security/selinux/ss/services.c in the Linux kernel allowed local users to cause a denial of service (system crash) by leveraging the CAP_MAC_ADMIN capability to set a zero-length security context (bnc#863335). CVE-2014-0181: The Netlink implementation in the Linux kernel did not provide a mechanism for authorizing socket operations based on the opener of a socket, which allowed local users to bypass intended access restrictions and modify network configurations by using a Netlink socket for the (1) stdout or (2) stderr of a setuid program (bnc#875051). CVE-2013-4299: Interpretation conflict in drivers/md/dm-snap-persistent.c in the Linux kernel allowed remote authenticated users to obtain sensitive information or modify data via a crafted mapping to a snapshot block device (bnc#846404). CVE-2013-2147: The HP Smart Array controller disk-array driver and Compaq SMART2 controller disk-array driver in the Linux kernel did not initialize certain data structures, which allowed local users to obtain sensitive information from kernel memory via (1) a crafted IDAGETPCIINFO command for a /dev/ida device, related to the ida_locked_ioctl function in drivers/block/cpqarray.c or (2) a crafted CCISS_PASSTHRU32 command for a /dev/cciss device, related to the cciss_ioctl32_passthru function in drivers/block/cciss.c (bnc#823260). CVE-2012-6657: The sock_setsockopt function in net/core/sock.c in the Linux kernel did not ensure that a keepalive action is associated with a stream socket, which allowed local users to cause a denial of service (system crash) by leveraging the ability to create a raw socket (bnc#896779). CVE-2012-3400: Heap-based buffer overflow in the udf_load_logicalvol function in fs/udf/super.c in the Linux kernel allowed remote attackers to cause a denial of service (system crash) or possibly have unspecified other impact via a crafted UDF filesystem (bnc#769784). CVE-2012-2319: Multiple buffer overflows in the hfsplus filesystem implementation in the Linux kernel allowed local users to gain privileges via a crafted HFS plus filesystem, a related issue to CVE-2009-4020 (bnc#760902). CVE-2012-2313: The rio_ioctl function in drivers/net/ethernet/dlink/dl2k.c in the Linux kernel did not restrict access to the SIOCSMIIREG command, which allowed local users to write data to an Ethernet adapter via an ioctl call (bnc#758813). CVE-2011-4132: The cleanup_journal_tail function in the Journaling Block Device (JBD) functionality in the Linux kernel 2.6 allowed local users to cause a denial of service (assertion error and kernel oops) via an ext3 or ext4 image with an
    last seen2020-06-01
    modified2020-06-02
    plugin id83723
    published2015-05-20
    reporterThis script is Copyright (C) 2015-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/83723
    titleSUSE SLES10 Security Update : kernel (SUSE-SU-2015:0812-1)
  • NASL familyCentOS Local Security Checks
    NASL idCENTOS_RHSA-2011-0833.NASL
    descriptionUpdated kernel packages that fix multiple security issues and several bugs are now available for Red Hat Enterprise Linux 5. The Red Hat Security Response Team has rated this update as having important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The kernel packages contain the Linux kernel, the core of any Linux operating system. This update fixes the following security issues : * A flaw in the dccp_rcv_state_process() function could allow a remote attacker to cause a denial of service, even when the socket was already closed. (CVE-2011-1093, Important) * Multiple buffer overflow flaws were found in the Linux kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id67081
    published2013-06-29
    reporterThis script is Copyright (C) 2013-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/67081
    titleCentOS 5 : kernel (CESA-2011:0833)
  • NASL familyScientific Linux Local Security Checks
    NASL idSL_20110519_KERNEL_ON_SL6_X.NASL
    descriptionThe kernel packages contain the Linux kernel, the core of any Linux operating system. This update fixes the following security issues : - Multiple buffer overflow flaws were found in the Linux kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id61041
    published2012-08-01
    reporterThis script is Copyright (C) 2012-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/61041
    titleScientific Linux Security Update : kernel on SL6.x i386/x86_64
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1161-1.NASL
    descriptionVasiliy Kulikov discovered that kvm did not correctly clear memory. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy. (CVE-2010-3881) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090) Timo Warns discovered that OSF partition parsing routines did not correctly clear memory. A local attacker with physical access could plug in a specially crafted block device to read kernel memory, leading to a loss of privacy. (CVE-2011-1163) Dan Rosenberg discovered that MPT devices did not correctly validate certain values in ioctl calls. If these drivers were loaded, a local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2011-1494, CVE-2011-1495) Tavis Ormandy discovered that the pidmap function did not correctly handle large requests. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1593) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598, CVE-2011-1748) Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl values. A local attacker with access to the video subsystem could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-1745, CVE-2011-2022) Vasiliy Kulikov discovered that the AGP driver did not check the size of certain memory allocations. A local attacker with access to the video subsystem could exploit this to run the system out of memory, leading to a denial of service. (CVE-2011-1746) Dan Rosenberg reported an error in the old ABI compatibility layer of ARM kernels. A local attacker could exploit this flaw to cause a denial of service or gain root privileges. (CVE-2011-1759) Dan Rosenberg discovered that the DCCP stack did not correctly handle certain packet structures. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1770) Timo Warns discovered that the EFI GUID partition table was not correctly parsed. A physically local attacker that could insert mountable devices could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1776) Yogesh Sharma discovered that CIFS did not correctly handle UNCs that had no prefixpaths. A local attacker with access to a CIFS partition could exploit this to crash the system, leading to a denial of service. (CVE-2011-3363). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen2020-06-01
    modified2020-06-02
    plugin id55590
    published2011-07-14
    reporterUbuntu Security Notice (C) 2011-2019 Canonical, Inc. / NASL script (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/55590
    titleUbuntu 10.04 LTS : linux-ec2 vulnerabilities (USN-1161-1)
  • NASL familySuSE Local Security Checks
    NASL idSUSE_KERNEL-7666.NASL
    descriptionThis kernel update for the SUSE Linux Enterprise 10 SP4 kernel fixes several security issues and bugs. The following security issues were fixed : - The dccp_rcv_state_process function in net/dccp/input.c in the Datagram Congestion Control Protocol (DCCP) implementation in the Linux kernel did not properly handle packets for a CLOSED endpoint, which allowed remote attackers to cause a denial of service (NULL pointer dereference and OOPS) by sending a DCCP-Close packet followed by a DCCP-Reset packet. (CVE-2011-1093) - The add_del_listener function in kernel/taskstats.c in the Linux kernel did not prevent multiple registrations of exit handlers, which allowed local users to cause a denial of service (memory and CPU consumption), and bypass the OOM Killer, via a crafted application. (CVE-2011-2484) - Integer overflow in the agp_generic_insert_memory function in drivers/char/agp/generic.c in the Linux kernel allowed local users to gain privileges or cause a denial of service (system crash) via a crafted AGPIOC_BIND agp_ioctl ioctl call. (CVE-2011-1745) - Multiple integer overflows in the (1) agp_allocate_memory and (2) agp_create_user_memory functions in drivers/char/agp/generic.c in the Linux kernel allowed local users to trigger buffer overflows, and consequently cause a denial of service (system crash) or possibly have unspecified other impact, via vectors related to calls that specify a large number of memory pages. (CVE-2011-1746) - The agp_generic_remove_memory function in drivers/char/agp/generic.c in the Linux kernel before 2.6.38.5 did not validate a certain start parameter, which allowed local users to gain privileges or cause a denial of service (system crash) via a crafted AGPIOC_UNBIND agp_ioctl ioctl call, a different vulnerability than CVE-2011-1745. (CVE-2011-2022) - When using a setuid root mount.cifs, local users could hijack password protected mounted CIFS shares of other local users. (CVE-2011-1585) - The do_task_stat function in fs/proc/array.c in the Linux kernel did not perform an expected uid check, which made it easier for local users to defeat the ASLR protection mechanism by reading the start_code and end_code fields in the /proc/#####/stat file for a process executing a PIE binary. (CVE-2011-0726) - The normal mmap paths all avoid creating a mapping where the pgoff inside the mapping could wrap around due to overflow. However, an expanding mremap() can take such a non-wrapping mapping and make it bigger and cause a wrapping condition. (CVE-2011-2496) - A local unprivileged user able to access a NFS filesystem could use file locking to deadlock parts of an nfs server under some circumstance. (CVE-2011-2491) - The code for evaluating LDM partitions (in fs/partitions/ldm.c) contained bugs that could crash the kernel for certain corrupted LDM partitions. (CVE-2011-1017 / CVE-2011-2182) - Multiple integer overflows in the next_pidmap function in kernel/pid.c in the Linux kernel allowed local users to cause a denial of service (system crash) via a crafted (1) getdents or (2) readdir system call. (CVE-2011-1593) - Integer overflow in the _ctl_do_mpt_command function in drivers/scsi/mpt2sas/mpt2sas_ctl.c in the Linux kernel might have allowed local users to gain privileges or cause a denial of service (memory corruption) via an ioctl call specifying a crafted value that triggers a heap-based buffer overflow. (CVE-2011-1494) - drivers/scsi/mpt2sas/mpt2sas_ctl.c in the Linux kernel did not validate (1) length and (2) offset values before performing memory copy operations, which might have allowed local users to gain privileges, cause a denial of service (memory corruption), or obtain sensitive information from kernel memory via a crafted ioctl call, related to the _ctl_do_mpt_command and _ctl_diag_read_buffer functions. (CVE-2011-1495)
    last seen2020-06-01
    modified2020-06-02
    plugin id57213
    published2011-12-13
    reporterThis script is Copyright (C) 2011-2019 Tenable Network Security, Inc.
    sourcehttps://www.tenable.com/plugins/nessus/57213
    titleSuSE 10 Security Update : Linux kernel (ZYPP Patch Number 7666)
  • NASL familyOracle Linux Local Security Checks
    NASL idORACLELINUX_ELSA-2011-0833.NASL
    descriptionFrom Red Hat Security Advisory 2011:0833 : Updated kernel packages that fix multiple security issues and several bugs are now available for Red Hat Enterprise Linux 5. The Red Hat Security Response Team has rated this update as having important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The kernel packages contain the Linux kernel, the core of any Linux operating system. This update fixes the following security issues : * A flaw in the dccp_rcv_state_process() function could allow a remote attacker to cause a denial of service, even when the socket was already closed. (CVE-2011-1093, Important) * Multiple buffer overflow flaws were found in the Linux kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id68276
    published2013-07-12
    reporterThis script is Copyright (C) 2013-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/68276
    titleOracle Linux 5 : kernel (ELSA-2011-0833)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1187-1.NASL
    descriptionIt was discovered that KVM did not correctly initialize certain CPU registers. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-3698) Thomas Pollet discovered that the RDS network protocol did not check certain iovec buffers. A local attacker could exploit this to crash the system or possibly execute arbitrary code as the root user. (CVE-2010-3865) Vasiliy Kulikov discovered that the Linux kernel X.25 implementation did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3875) Vasiliy Kulikov discovered that the Linux kernel sockets implementation did not properly initialize certain structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3876) Vasiliy Kulikov discovered that the TIPC interface did not correctly initialize certain structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3877) Nelson Elhage discovered that the Linux kernel IPv4 implementation did not properly audit certain bytecodes in netlink messages. A local attacker could exploit this to cause the kernel to hang, leading to a denial of service. (CVE-2010-3880) Vasiliy Kulikov discovered that kvm did not correctly clear memory. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy. (CVE-2010-3881) Dan Rosenberg discovered that multiple terminal ioctls did not correctly initialize structure memory. A local attacker could exploit this to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4075, CVE-2010-4076, CVE-2010-4077) Dan Rosenberg discovered that the ivtv V4L driver did not correctly initialize certian structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4079) Dan Rosenberg discovered that the semctl syscall did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4083) Dan Rosenberg discovered that the SCSI subsystem did not correctly validate iov segments. A local attacker with access to a SCSI device could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2010-4163, CVE-2010-4668) It was discovered that multithreaded exec did not handle CPU timers correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4248) Nelson Elhage discovered that Econet did not correctly handle AUN packets over UDP. A local attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2010-4342) Tavis Ormandy discovered that the install_special_mapping function could bypass the mmap_min_addr restriction. A local attacker could exploit this to mmap 4096 bytes below the mmap_min_addr area, possibly improving the chances of performing NULL pointer dereference attacks. (CVE-2010-4346) Dan Rosenberg discovered that the OSS subsystem did not handle name termination correctly. A local attacker could exploit this crash the system or gain root privileges. (CVE-2010-4527) Dan Rosenberg discovered that IRDA did not correctly check the size of buffers. On non-x86 systems, a local attacker could exploit this to read kernel heap memory, leading to a loss of privacy. (CVE-2010-4529) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Dan Carpenter discovered that the Infiniband driver did not correctly handle certain requests. A local user could exploit this to crash the system or potentially gain root privileges. (CVE-2010-4649, CVE-2011-1044) Kees Cook discovered that the IOWarrior USB device driver did not correctly check certain size fields. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2010-4656) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Dan Carpenter discovered that the TTPCI DVB driver did not check certain values during an ioctl. If the dvb-ttpci module was loaded, a local attacker could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-0521) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Rafael Dominguez Vega discovered that the caiaq Native Instruments USB driver did not correctly validate string lengths. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2011-0712) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Timo Warns discovered that MAC partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system or potentially gain root privileges. (CVE-2011-1010) Timo Warns discovered that LDM partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1012) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system. (CVE-2011-1019) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Nelson Elhage discovered that the epoll subsystem did not correctly handle certain structures. A local attacker could create malicious requests that would hang the system, leading to a denial of service. (CVE-2011-1082) Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090) Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Timo Warns discovered that OSF partition parsing routines did not correctly clear memory. A local attacker with physical access could plug in a specially crafted block device to read kernel memory, leading to a loss of privacy. (CVE-2011-1163) Dan Rosenberg discovered that some ALSA drivers did not correctly check the adapter index during ioctl calls. If this driver was loaded, a local attacker could make a specially crafted ioctl call to gain root privileges. (CVE-2011-1169) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Ryan Sweat discovered that the GRO code did not correctly validate memory. In some configurations on systems using VLANs, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1478) Dan Rosenberg discovered that MPT devices did not correctly validate certain values in ioctl calls. If these drivers were loaded, a local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2011-1494, CVE-2011-1495) Timo Warns discovered that the GUID partition parsing routines did not correctly validate certain structures. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1577) Tavis Ormandy discovered that the pidmap function did not correctly handle large requests. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1593) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598, CVE-2011-1748) Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl values. A local attacker with access to the video subsystem could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-1745, CVE-2011-2022) Vasiliy Kulikov discovered that the AGP driver did not check the size of certain memory allocations. A local attacker with access to the video subsystem could exploit this to run the system out of memory, leading to a denial of service. (CVE-2011-1746). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen2020-06-01
    modified2020-06-02
    plugin id55785
    published2011-08-09
    reporterUbuntu Security Notice (C) 2011-2019 Canonical, Inc. / NASL script (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/55785
    titleUbuntu 10.04 LTS : linux-lts-backport-maverick vulnerabilities (USN-1187-1)
  • NASL familyFedora Local Security Checks
    NASL idFEDORA_2011-6447.NASL
    descriptionUpdate to kernel 2.6.34.9 : http://ftp.kernel.org/pub/linux/kernel/v2.6/longterm/v2.6.34/ChangeLog -2.6.34.9 Note that Tenable Network Security has extracted the preceding description block directly from the Fedora security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen2020-06-01
    modified2020-06-02
    plugin id55386
    published2011-06-22
    reporterThis script is Copyright (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/55386
    titleFedora 13 : kernel-2.6.34.9-69.fc13 (2011-6447)
  • NASL familyVMware ESX Local Security Checks
    NASL idVMWARE_VMSA-2012-0001.NASL
    descriptiona. ESX third-party update for Service Console kernel The ESX Service Console Operating System (COS) kernel is updated to kernel-2.6.18-274.3.1.el5 to fix multiple security issues in the COS kernel. The Common Vulnerabilities and Exposures project (cve.mitre.org) has assigned the names CVE-2011-0726, CVE-2011-1078, CVE-2011-1079, CVE-2011-1080, CVE-2011-1093, CVE-2011-1163, CVE-2011-1166, CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-1494, CVE-2011-1495, CVE-2011-1577, CVE-2011-1763, CVE-2010-4649, CVE-2011-0695, CVE-2011-0711, CVE-2011-1044, CVE-2011-1182, CVE-2011-1573, CVE-2011-1576, CVE-2011-1593, CVE-2011-1745, CVE-2011-1746, CVE-2011-1776, CVE-2011-1936, CVE-2011-2022, CVE-2011-2213, CVE-2011-2492, CVE-2011-1780, CVE-2011-2525, CVE-2011-2689, CVE-2011-2482, CVE-2011-2491, CVE-2011-2495, CVE-2011-2517, CVE-2011-2519, CVE-2011-2901 to these issues. b. ESX third-party update for Service Console cURL RPM The ESX Service Console (COS) curl RPM is updated to cURL-7.15.5.9 resolving a security issues. The Common Vulnerabilities and Exposures project (cve.mitre.org) has assigned the name CVE-2011-2192 to this issue. c. ESX third-party update for Service Console nspr and nss RPMs The ESX Service Console (COS) nspr and nss RPMs are updated to nspr-4.8.8-1.el5_7 and nss-3.12.10-4.el5_7 respectively resolving a security issues. A Certificate Authority (CA) issued fraudulent SSL certificates and Netscape Portable Runtime (NSPR) and Network Security Services (NSS) contain the built-in tokens of this fraudulent Certificate Authority. This update renders all SSL certificates signed by the fraudulent CA as untrusted for all uses. d. ESX third-party update for Service Console rpm RPMs The ESX Service Console Operating System (COS) rpm packages are updated to popt-1.10.2.3-22.el5_7.2, rpm-4.4.2.3-22.el5_7.2, rpm-libs-4.4.2.3-22.el5_7.2 and rpm-python-4.4.2.3-22.el5_7.2 which fixes multiple security issues. The Common Vulnerabilities and Exposures project (cve.mitre.org) has assigned the names CVE-2010-2059 and CVE-2011-3378 to these issues. e. ESX third-party update for Service Console samba RPMs The ESX Service Console Operating System (COS) samba packages are updated to samba-client-3.0.33-3.29.el5_7.4, samba-common-3.0.33-3.29.el5_7.4 and libsmbclient-3.0.33-3.29.el5_7.4 which fixes multiple security issues in the Samba client. The Common Vulnerabilities and Exposures project (cve.mitre.org) has assigned the names CVE-2010-0547, CVE-2010-0787, CVE-2011-1678, CVE-2011-2522 and CVE-2011-2694 to these issues. Note that ESX does not include the Samba Web Administration Tool (SWAT) and therefore ESX COS is not affected by CVE-2011-2522 and CVE-2011-2694. f. ESX third-party update for Service Console python package The ESX Service Console (COS) python package is updated to 2.4.3-44 which fixes multiple security issues. The Common Vulnerabilities and Exposures project (cve.mitre.org) has assigned the names CVE-2009-3720, CVE-2010-3493, CVE-2011-1015 and CVE-2011-1521 to these issues. g. ESXi update to third-party component python The python third-party library is updated to python 2.5.6 which fixes multiple security issues. The Common Vulnerabilities and Exposures project (cve.mitre.org) has assigned the names CVE-2009-3560, CVE-2009-3720, CVE-2010-1634, CVE-2010-2089, and CVE-2011-1521 to these issues.
    last seen2020-06-01
    modified2020-06-02
    plugin id57749
    published2012-01-31
    reporterThis script is Copyright (C) 2012-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/57749
    titleVMSA-2012-0001 : VMware ESXi and ESX updates to third-party library and ESX Service Console
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1167-1.NASL
    descriptionAristide Fattori and Roberto Paleari reported a flaw in the Linux kernel
    last seen2020-03-18
    modified2011-07-14
    plugin id55591
    published2011-07-14
    reporterUbuntu Security Notice (C) 2011-2020 Canonical, Inc. / NASL script (C) 2011-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/55591
    titleUbuntu 11.04 : linux vulnerabilities (USN-1167-1)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1164-1.NASL
    descriptionThomas Pollet discovered that the RDS network protocol did not check certain iovec buffers. A local attacker could exploit this to crash the system or possibly execute arbitrary code as the root user. (CVE-2010-3865) Dan Rosenberg discovered that the CAN protocol on 64bit systems did not correctly calculate the size of certain buffers. A local attacker could exploit this to crash the system or possibly execute arbitrary code as the root user. (CVE-2010-3874) Vasiliy Kulikov discovered that the Linux kernel X.25 implementation did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3875) Vasiliy Kulikov discovered that the Linux kernel sockets implementation did not properly initialize certain structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3876) Vasiliy Kulikov discovered that the TIPC interface did not correctly initialize certain structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3877) Nelson Elhage discovered that the Linux kernel IPv4 implementation did not properly audit certain bytecodes in netlink messages. A local attacker could exploit this to cause the kernel to hang, leading to a denial of service. (CVE-2010-3880) Dan Rosenberg discovered that the RME Hammerfall DSP audio interface driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4080, CVE-2010-4081) Dan Rosenberg discovered that the VIA video driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4082) Dan Rosenberg discovered that the semctl syscall did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4083) James Bottomley discovered that the ICP vortex storage array controller driver did not validate certain sizes. A local attacker on a 64bit system could exploit this to crash the kernel, leading to a denial of service. (CVE-2010-4157) Dan Rosenberg discovered multiple flaws in the X.25 facilities parsing. If a system was using X.25, a remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4164) It was discovered that multithreaded exec did not handle CPU timers correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4248) Nelson Elhage discovered that the kernel did not correctly handle process cleanup after triggering a recoverable kernel bug. If a local attacker were able to trigger certain kinds of kernel bugs, they could create a specially crafted process to gain root privileges. (CVE-2010-4258) Nelson Elhage discovered that Econet did not correctly handle AUN packets over UDP. A local attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2010-4342) Tavis Ormandy discovered that the install_special_mapping function could bypass the mmap_min_addr restriction. A local attacker could exploit this to mmap 4096 bytes below the mmap_min_addr area, possibly improving the chances of performing NULL pointer dereference attacks. (CVE-2010-4346) Dan Rosenberg discovered that the OSS subsystem did not handle name termination correctly. A local attacker could exploit this crash the system or gain root privileges. (CVE-2010-4527) Dan Rosenberg discovered that IRDA did not correctly check the size of buffers. On non-x86 systems, a local attacker could exploit this to read kernel heap memory, leading to a loss of privacy. (CVE-2010-4529) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Kees Cook discovered that some ethtool functions did not correctly clear heap memory. A local attacker with CAP_NET_ADMIN privileges could exploit this to read portions of kernel heap memory, leading to a loss of privacy. (CVE-2010-4655) Kees Cook discovered that the IOWarrior USB device driver did not correctly check certain size fields. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2010-4656) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Dan Carpenter discovered that the TTPCI DVB driver did not check certain values during an ioctl. If the dvb-ttpci module was loaded, a local attacker could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-0521) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Rafael Dominguez Vega discovered that the caiaq Native Instruments USB driver did not correctly validate string lengths. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2011-0712) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Dan Rosenberg discovered that MPT devices did not correctly validate certain values in ioctl calls. If these drivers were loaded, a local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2011-1494, CVE-2011-1495) Tavis Ormandy discovered that the pidmap function did not correctly handle large requests. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1593) Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl values. A local attacker with access to the video subsystem could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-1745, CVE-2011-2022) Vasiliy Kulikov discovered that the AGP driver did not check the size of certain memory allocations. A local attacker with access to the video subsystem could exploit this to run the system out of memory, leading to a denial of service. (CVE-2011-1746, CVE-2011-1747) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1748)
    last seen2020-06-01
    modified2020-06-02
    plugin id55530
    published2011-07-07
    reporterUbuntu Security Notice (C) 2011 Canonical, Inc. / NASL script (C) 2011-2016 Tenable Network Security, Inc.
    sourcehttps://www.tenable.com/plugins/nessus/55530
    titleUSN-1164-1 : linux-fsl-imx51 vulnerabilities
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1202-1.NASL
    descriptionDan Rosenberg discovered that several network ioctls did not clear kernel memory correctly. A local user could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3296, CVE-2010-3297) Brad Spengler discovered that stack memory for new a process was not correctly calculated. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-3858) Dan Rosenberg discovered that the Linux kernel TIPC implementation contained multiple integer signedness errors. A local attacker could exploit this to gain root privileges. (CVE-2010-3859) Dan Rosenberg discovered that the CAN protocol on 64bit systems did not correctly calculate the size of certain buffers. A local attacker could exploit this to crash the system or possibly execute arbitrary code as the root user. (CVE-2010-3874) Nelson Elhage discovered that the Linux kernel IPv4 implementation did not properly audit certain bytecodes in netlink messages. A local attacker could exploit this to cause the kernel to hang, leading to a denial of service. (CVE-2010-3880) Dan Rosenberg discovered that IPC structures were not correctly initialized on 64bit systems. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4073) Dan Rosenberg discovered that multiple terminal ioctls did not correctly initialize structure memory. A local attacker could exploit this to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4075, CVE-2010-4076, CVE-2010-4077) Dan Rosenberg discovered that the RME Hammerfall DSP audio interface driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4080, CVE-2010-4081) Dan Rosenberg discovered that the VIA video driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4082) Dan Rosenberg discovered that the semctl syscall did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4083) James Bottomley discovered that the ICP vortex storage array controller driver did not validate certain sizes. A local attacker on a 64bit system could exploit this to crash the kernel, leading to a denial of service. (CVE-2010-4157) Dan Rosenberg discovered that the Linux kernel L2TP implementation contained multiple integer signedness errors. A local attacker could exploit this to to crash the kernel, or possibly gain root privileges. (CVE-2010-4160) Dan Rosenberg discovered that certain iovec operations did not calculate page counts correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4162) Dan Rosenberg discovered that the SCSI subsystem did not correctly validate iov segments. A local attacker with access to a SCSI device could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2010-4163, CVE-2010-4668) Dave Jones discovered that the mprotect system call did not correctly handle merged VMAs. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4169) Dan Rosenberg discovered that the RDS protocol did not correctly check ioctl arguments. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4175) Alan Cox discovered that the HCI UART driver did not correctly check if a write operation was available. If the mmap_min-addr sysctl was changed from the Ubuntu default to a value of 0, a local attacker could exploit this flaw to gain root privileges. (CVE-2010-4242) Brad Spengler discovered that the kernel did not correctly account for userspace memory allocations during exec() calls. A local attacker could exploit this to consume all system memory, leading to a denial of service. (CVE-2010-4243) It was discovered that multithreaded exec did not handle CPU timers correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4248) It was discovered that named pipes did not correctly handle certain fcntl calls. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4256) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Dan Carpenter discovered that the Infiniband driver did not correctly handle certain requests. A local user could exploit this to crash the system or potentially gain root privileges. (CVE-2010-4649, CVE-2011-1044) Kees Cook discovered that some ethtool functions did not correctly clear heap memory. A local attacker with CAP_NET_ADMIN privileges could exploit this to read portions of kernel heap memory, leading to a loss of privacy. (CVE-2010-4655) Kees Cook discovered that the IOWarrior USB device driver did not correctly check certain size fields. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2010-4656) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Dan Carpenter discovered that the TTPCI DVB driver did not check certain values during an ioctl. If the dvb-ttpci module was loaded, a local attacker could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-0521) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Rafael Dominguez Vega discovered that the caiaq Native Instruments USB driver did not correctly validate string lengths. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2011-0712) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Timo Warns discovered that MAC partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system or potentially gain root privileges. (CVE-2011-1010) Timo Warns discovered that LDM partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1012) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system. (CVE-2011-1019) It was discovered that the /proc filesystem did not correctly handle permission changes when programs executed. A local attacker could hold open files to examine details about programs running with higher privileges, potentially increasing the chances of exploiting additional vulnerabilities. (CVE-2011-1020) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Nelson Elhage discovered that the epoll subsystem did not correctly handle certain structures. A local attacker could create malicious requests that would hang the system, leading to a denial of service. (CVE-2011-1082) Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090) Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Timo Warns discovered that OSF partition parsing routines did not correctly clear memory. A local attacker with physical access could plug in a specially crafted block device to read kernel memory, leading to a loss of privacy. (CVE-2011-1163) Dan Rosenberg discovered that some ALSA drivers did not correctly check the adapter index during ioctl calls. If this driver was loaded, a local attacker could make a specially crafted ioctl call to gain root privileges. (CVE-2011-1169) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Ryan Sweat discovered that the GRO code did not correctly validate memory. In some configurations on systems using VLANs, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1478) Dan Rosenberg discovered that the X.25 Rose network stack did not correctly handle certain fields. If a system was running with Rose enabled, a remote attacker could send specially crafted traffic to gain root privileges. (CVE-2011-1493) Dan Rosenberg discovered that MPT devices did not correctly validate certain values in ioctl calls. If these drivers were loaded, a local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2011-1494, CVE-2011-1495) Timo Warns discovered that the GUID partition parsing routines did not correctly validate certain structures. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1577) Tavis Ormandy discovered that the pidmap function did not correctly handle large requests. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1593) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598, CVE-2011-1748) Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl values. A local attacker with access to the video subsystem could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-1745, CVE-2011-2022) Vasiliy Kulikov discovered that the AGP driver did not check the size of certain memory allocations. A local attacker with access to the video subsystem could exploit this to run the system out of memory, leading to a denial of service. (CVE-2011-1746) Dan Rosenberg discovered that the DCCP stack did not correctly handle certain packet structures. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1770) Vasiliy Kulikov and Dan Rosenberg discovered that ecryptfs did not correctly check the origin of mount points. A local attacker could exploit this to trick the system into unmounting arbitrary mount points, leading to a denial of service. (CVE-2011-1833) Vasiliy Kulikov discovered that taskstats listeners were not correctly handled. A local attacker could expoit this to exhaust memory and CPU resources, leading to a denial of service. (CVE-2011-2484) It was discovered that Bluetooth l2cap and rfcomm did not correctly initialize structures. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy. (CVE-2011-2492) Fernando Gont discovered that the IPv6 stack used predictable fragment identification numbers. A remote attacker could exploit this to exhaust network resources, leading to a denial of service. (CVE-2011-2699) The performance counter subsystem did not correctly handle certain counters. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2918)
    last seen2020-06-01
    modified2020-06-02
    plugin id56190
    published2011-09-14
    reporterUbuntu Security Notice (C) 2011 Canonical, Inc. / NASL script (C) 2011-2016 Tenable Network Security, Inc.
    sourcehttps://www.tenable.com/plugins/nessus/56190
    titleUSN-1202-1 : linux-ti-omap4 vulnerabilities
  • NASL familyRed Hat Local Security Checks
    NASL idREDHAT-RHSA-2011-0542.NASL
    descriptionUpdated kernel packages that fix multiple security issues, address several hundred bugs and add numerous enhancements are now available as part of the ongoing support and maintenance of Red Hat Enterprise Linux version 6. This is the first regular update. The Red Hat Security Response Team has rated this update as having important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The kernel packages contain the Linux kernel, the core of any Linux operating system. This update fixes the following security issues : * Multiple buffer overflow flaws were found in the Linux kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id54590
    published2011-05-20
    reporterThis script is Copyright (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/54590
    titleRHEL 6 : kernel (RHSA-2011:0542)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1212-1.NASL
    descriptionGoldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) It was discovered that the /proc filesystem did not correctly handle permission changes when programs executed. A local attacker could hold open files to examine details about programs running with higher privileges, potentially increasing the chances of exploiting additional vulnerabilities. (CVE-2011-1020) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Dan Rosenberg discovered that the X.25 Rose network stack did not correctly handle certain fields. If a system was running with Rose enabled, a remote attacker could send specially crafted traffic to gain root privileges. (CVE-2011-1493) Dan Rosenberg discovered that MPT devices did not correctly validate certain values in ioctl calls. If these drivers were loaded, a local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2011-1494, CVE-2011-1495) Timo Warns discovered that the GUID partition parsing routines did not correctly validate certain structures. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1577) Phil Oester discovered that the network bonding system did not correctly handle large queues. On some systems, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1581) Tavis Ormandy discovered that the pidmap function did not correctly handle large requests. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1593) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598, CVE-2011-1748) Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl values. A local attacker with access to the video subsystem could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-1745, CVE-2011-2022) Vasiliy Kulikov discovered that the AGP driver did not check the size of certain memory allocations. A local attacker with access to the video subsystem could exploit this to run the system out of memory, leading to a denial of service. (CVE-2011-1746) Dan Rosenberg discovered that the DCCP stack did not correctly handle certain packet structures. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1770) Ben Greear discovered that CIFS did not correctly handle direct I/O. A local attacker with access to a CIFS partition could exploit this to crash the system, leading to a denial of service. (CVE-2011-1771) Vasiliy Kulikov and Dan Rosenberg discovered that ecryptfs did not correctly check the origin of mount points. A local attacker could exploit this to trick the system into unmounting arbitrary mount points, leading to a denial of service. (CVE-2011-1833) Vasiliy Kulikov discovered that taskstats listeners were not correctly handled. A local attacker could expoit this to exhaust memory and CPU resources, leading to a denial of service. (CVE-2011-2484) It was discovered that Bluetooth l2cap and rfcomm did not correctly initialize structures. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy. (CVE-2011-2492) Sami Liedes discovered that ext4 did not correctly handle missing root inodes. A local attacker could trigger the mount of a specially crafted filesystem to cause the system to crash, leading to a denial of service. (CVE-2011-2493) It was discovered that GFS2 did not correctly check block sizes. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2689) Fernando Gont discovered that the IPv6 stack used predictable fragment identification numbers. A remote attacker could exploit this to exhaust network resources, leading to a denial of service. (CVE-2011-2699) The performance counter subsystem did not correctly handle certain counters. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2918)
    last seen2020-06-01
    modified2020-06-02
    plugin id56257
    published2011-09-22
    reporterUbuntu Security Notice (C) 2011 Canonical, Inc. / NASL script (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/56257
    titleUSN-1212-1 : linux-ti-omap4 vulnerabilities
  • NASL familyVMware ESX Local Security Checks
    NASL idVMWARE_VMSA-2011-0012.NASL
    descriptiona. ESX third-party update for Service Console kernel This update takes the console OS kernel package to kernel-2.6.18-238.9.1 which resolves multiple security issues. The Common Vulnerabilities and Exposures project (cve.mitre.org) has assigned the names CVE-2010-1083, CVE-2010-2492, CVE-2010-2798, CVE-2010-2938, CVE-2010-2942, CVE-2010-2943, CVE-2010-3015, CVE-2010-3066, CVE-2010-3067, CVE-2010-3078, CVE-2010-3086, CVE-2010-3296, CVE-2010-3432, CVE-2010-3442, CVE-2010-3477, CVE-2010-3699, CVE-2010-3858, CVE-2010-3859, CVE-2010-3865, CVE-2010-3876, CVE-2010-3877, CVE-2010-3880, CVE-2010-3904, CVE-2010-4072, CVE-2010-4073, CVE-2010-4075, CVE-2010-4080, CVE-2010-4081, CVE-2010-4083, CVE-2010-4157, CVE-2010-4158, CVE-2010-4161, CVE-2010-4238, CVE-2010-4242, CVE-2010-4243, CVE-2010-4247, CVE-2010-4248, CVE-2010-4249, CVE-2010-4251, CVE-2010-4255, CVE-2010-4263, CVE-2010-4343, CVE-2010-4346, CVE-2010-4526, CVE-2010-4655, CVE-2011-0521, CVE-2011-0710, CVE-2011-1010, CVE-2011-1090 and CVE-2011-1478 to these issues. b. ESX third-party update for Service Console krb5 RPMs This patch updates the krb5-libs and krb5-workstation RPMs of the console OS to version 1.6.1-55.el5_6.1, which resolves multiple security issues. The Common Vulnerabilities and Exposures project (cve.mitre.org) has assigned the names CVE-2010-1323, CVE-2011-0281, and CVE-2011-0282 to these issues. c. ESXi and ESX update to third-party component glibc The glibc third-party library is updated to resolve multiple security issues. The Common Vulnerabilities and Exposures project (cve.mitre.org) has assigned the names CVE-2010-0296, CVE-2011-0536, CVE-2011-1071, CVE-2011-1095, CVE-2011-1658, and CVE-2011-1659 to these issues. d. ESX update to third-party drivers mptsas, mpt2sas, and mptspi The mptsas, mpt2sas, and mptspi drivers are updated which addresses multiple security issues in the mpt2sas driver. The Common Vulnerabilities and Exposures project (cve.mitre.org) has assigned the names CVE-2011-1494 and CVE-2011-1495 to these issues.
    last seen2020-06-01
    modified2020-06-02
    plugin id56508
    published2011-10-14
    reporterThis script is Copyright (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/56508
    titleVMSA-2011-0012 : VMware ESXi and ESX updates to third-party libraries and ESX Service Console
  • NASL familyRed Hat Local Security Checks
    NASL idREDHAT-RHSA-2011-1253.NASL
    descriptionUpdated kernel-rt packages that fix multiple security issues and various bugs are now available for Red Hat Enterprise MRG 2.0. The Red Hat Security Response Team has rated this update as having important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. Security fixes : * A flaw in the SCTP and DCCP implementations could allow a remote attacker to cause a denial of service. (CVE-2010-4526, CVE-2011-1770, Important) * Flaws in the Management Module Support for Message Passing Technology (MPT) based controllers could allow a local, unprivileged user to cause a denial of service, an information leak, or escalate their privileges. (CVE-2011-1494, CVE-2011-1495, Important) * Flaws in the AGPGART driver, and a flaw in agp_allocate_memory(), could allow a local user to cause a denial of service or escalate their privileges. (CVE-2011-1745, CVE-2011-2022, CVE-2011-1746, Important) * A flaw in the client-side NLM implementation could allow a local, unprivileged user to cause a denial of service. (CVE-2011-2491, Important) * A flaw in the Bluetooth implementation could allow a remote attacker to cause a denial of service or escalate their privileges. (CVE-2011-2497, Important) * Flaws in the netlink-based wireless configuration interface could allow a local user, who has the CAP_NET_ADMIN capability, to cause a denial of service or escalate their privileges on systems that have an active wireless interface. (CVE-2011-2517, Important) * The maximum file offset handling for ext4 file systems could allow a local, unprivileged user to cause a denial of service. (CVE-2011-2695, Important) * A local, unprivileged user could allocate large amounts of memory not visible to the OOM killer, causing a denial of service. (CVE-2010-4243, Moderate) * The proc file system could allow a local, unprivileged user to obtain sensitive information or possibly cause integrity issues. (CVE-2011-1020, Moderate) * A local, privileged user could possibly write arbitrary kernel memory via /sys/kernel/debug/acpi/custom_method. (CVE-2011-1021, Moderate) * Inconsistency in the methods for allocating and freeing NFSv4 ACL data; CVE-2010-4250 fix caused a regression; a flaw in next_pidmap() and inet_diag_bc_audit(); flaws in the CAN implementation; a race condition in the memory merging support; a flaw in the taskstats subsystem; and the way mapping expansions were handled could allow a local, unprivileged user to cause a denial of service. (CVE-2011-1090, CVE-2011-1479, CVE-2011-1593, CVE-2011-2213, CVE-2011-1598, CVE-2011-1748, CVE-2011-2183, CVE-2011-2484, CVE-2011-2496, Moderate) * A flaw in GRO could result in a denial of service when a malformed VLAN frame is received. (CVE-2011-1478, Moderate) * napi_reuse_skb() could be called on VLAN packets allowing an attacker on the local network to possibly trigger a denial of service. (CVE-2011-1576, Moderate) * A denial of service could occur if packets were received while the ipip or ip_gre module was being loaded. (CVE-2011-1767, CVE-2011-1768, Moderate) * Information leaks. (CVE-2011-1160, CVE-2011-2492, CVE-2011-2495, Low) * Flaws in the EFI GUID Partition Table implementation could allow a local attacker to cause a denial of service. (CVE-2011-1577, CVE-2011-1776, Low) * While a user has a CIFS share mounted that required successful authentication, a local, unprivileged user could mount that share without knowing the correct password if mount.cifs was setuid root. (CVE-2011-1585, Low) Red Hat would like to thank Dan Rosenberg for reporting CVE-2011-1770, CVE-2011-1494, CVE-2011-1495, CVE-2011-2497, and CVE-2011-2213; Vasiliy Kulikov of Openwall for reporting CVE-2011-1745, CVE-2011-2022, CVE-2011-1746, CVE-2011-2484, and CVE-2011-2495; Vasily Averin for reporting CVE-2011-2491; Brad Spengler for reporting CVE-2010-4243; Kees Cook for reporting CVE-2011-1020; Robert Swiecki for reporting CVE-2011-1593 and CVE-2011-2496; Oliver Hartkopp for reporting CVE-2011-1748; Andrea Righi for reporting CVE-2011-2183; Ryan Sweat for reporting CVE-2011-1478 and CVE-2011-1576; Peter Huewe for reporting CVE-2011-1160; Marek Kroemeke and Filip Palian for reporting CVE-2011-2492; and Timo Warns for reporting CVE-2011-1577 and CVE-2011-1776.
    last seen2020-06-01
    modified2020-06-02
    plugin id76634
    published2014-07-22
    reporterThis script is Copyright (C) 2014-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/76634
    titleRHEL 6 : MRG (RHSA-2011:1253)
  • NASL familyScientific Linux Local Security Checks
    NASL idSL_20110531_KERNEL_ON_SL5_X.NASL
    descriptionThe kernel packages contain the Linux kernel, the core of any Linux operating system. This update fixes the following security issues : - A flaw in the dccp_rcv_state_process() function could allow a remote attacker to cause a denial of service, even when the socket was already closed. (CVE-2011-1093, Important) - Multiple buffer overflow flaws were found in the Linux kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id61059
    published2012-08-01
    reporterThis script is Copyright (C) 2012-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/61059
    titleScientific Linux Security Update : kernel on SL5.x i386/x86_64
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1162-1.NASL
    descriptionBrad Spengler discovered that the kernel did not correctly account for userspace memory allocations during exec() calls. A local attacker could exploit this to consume all system memory, leading to a denial of service. (CVE-2010-4243) Alexander Duyck discovered that the Intel Gigabit Ethernet driver did not correctly handle certain configurations. If such a device was configured without VLANs, a remote attacker could crash the system, leading to a denial of service. (CVE-2010-4263) Nelson Elhage discovered that Econet did not correctly handle AUN packets over UDP. A local attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2010-4342) Dan Rosenberg discovered that IRDA did not correctly check the size of buffers. On non-x86 systems, a local attacker could exploit this to read kernel heap memory, leading to a loss of privacy. (CVE-2010-4529) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system. (CVE-2011-1019) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Timo Warns discovered that OSF partition parsing routines did not correctly clear memory. A local attacker with physical access could plug in a specially crafted block device to read kernel memory, leading to a loss of privacy. (CVE-2011-1163) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Dan Rosenberg reported errors in the OSS (Open Sound System) MIDI interface. A local attacker on non-x86 systems might be able to cause a denial of service. (CVE-2011-1476) Dan Rosenberg reported errors in the kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id55521
    published2011-07-06
    reporterUbuntu Security Notice (C) 2011-2019 Canonical, Inc. / NASL script (C) 2011-2016 Tenable Network Security, Inc.
    sourcehttps://www.tenable.com/plugins/nessus/55521
    titleUbuntu 10.04 LTS : linux-mvl-dove vulnerabilities (USN-1162-1)
  • NASL familyMisc.
    NASL idVMWARE_VMSA-2011-0012_REMOTE.NASL
    descriptionThe remote VMware ESX / ESXi host is missing a security-related patch. It is, therefore, affected by multiple vulnerabilities in several third-party components and libraries : - Kernel - krb5 - glibc - mtp2sas - mptsas - mptspi
    last seen2020-06-01
    modified2020-06-02
    plugin id89680
    published2016-03-04
    reporterThis script is Copyright (C) 2016-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/89680
    titleVMware ESX / ESXi Third-Party Libraries Multiple Vulnerabilities (VMSA-2011-0012) (remote check)
  • NASL familyRed Hat Local Security Checks
    NASL idREDHAT-RHSA-2011-0833.NASL
    descriptionUpdated kernel packages that fix multiple security issues and several bugs are now available for Red Hat Enterprise Linux 5. The Red Hat Security Response Team has rated this update as having important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The kernel packages contain the Linux kernel, the core of any Linux operating system. This update fixes the following security issues : * A flaw in the dccp_rcv_state_process() function could allow a remote attacker to cause a denial of service, even when the socket was already closed. (CVE-2011-1093, Important) * Multiple buffer overflow flaws were found in the Linux kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id54925
    published2011-06-01
    reporterThis script is Copyright (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/54925
    titleRHEL 5 : kernel (RHSA-2011:0833)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1160-1.NASL
    descriptionDan Rosenberg discovered that IRDA did not correctly check the size of buffers. On non-x86 systems, a local attacker could exploit this to read kernel heap memory, leading to a loss of privacy. (CVE-2010-4529) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Kees Cook discovered that the IOWarrior USB device driver did not correctly check certain size fields. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2010-4656) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Dan Carpenter discovered that the TTPCI DVB driver did not check certain values during an ioctl. If the dvb-ttpci module was loaded, a local attacker could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-0521) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Rafael Dominguez Vega discovered that the caiaq Native Instruments USB driver did not correctly validate string lengths. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2011-0712) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Timo Warns discovered that MAC partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system or potentially gain root privileges. (CVE-2011-1010) Timo Warns discovered that LDM partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1012) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system. (CVE-2011-1019) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Nelson Elhage discovered that the epoll subsystem did not correctly handle certain structures. A local attacker could create malicious requests that would hang the system, leading to a denial of service. (CVE-2011-1082) Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Dan Rosenberg discovered that some ALSA drivers did not correctly check the adapter index during ioctl calls. If this driver was loaded, a local attacker could make a specially crafted ioctl call to gain root privileges. (CVE-2011-1169) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Dan Rosenberg reported errors in the OSS (Open Sound System) MIDI interface. A local attacker on non-x86 systems might be able to cause a denial of service. (CVE-2011-1476) Dan Rosenberg reported errors in the kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id55454
    published2011-06-29
    reporterUbuntu Security Notice (C) 2011-2019 Canonical, Inc. / NASL script (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/55454
    titleUbuntu 10.10 : linux vulnerabilities (USN-1160-1)
  • NASL familySuSE Local Security Checks
    NASL idSUSE_KERNEL-7665.NASL
    descriptionThis kernel update for the SUSE Linux Enterprise 10 SP4 kernel fixes several security issues and bugs. The following security issues were fixed : - The dccp_rcv_state_process function in net/dccp/input.c in the Datagram Congestion Control Protocol (DCCP) implementation in the Linux kernel did not properly handle packets for a CLOSED endpoint, which allowed remote attackers to cause a denial of service (NULL pointer dereference and OOPS) by sending a DCCP-Close packet followed by a DCCP-Reset packet. (CVE-2011-1093) - The add_del_listener function in kernel/taskstats.c in the Linux kernel did not prevent multiple registrations of exit handlers, which allowed local users to cause a denial of service (memory and CPU consumption), and bypass the OOM Killer, via a crafted application. (CVE-2011-2484) - Integer overflow in the agp_generic_insert_memory function in drivers/char/agp/generic.c in the Linux kernel allowed local users to gain privileges or cause a denial of service (system crash) via a crafted AGPIOC_BIND agp_ioctl ioctl call. (CVE-2011-1745) - Multiple integer overflows in the (1) agp_allocate_memory and (2) agp_create_user_memory functions in drivers/char/agp/generic.c in the Linux kernel allowed local users to trigger buffer overflows, and consequently cause a denial of service (system crash) or possibly have unspecified other impact, via vectors related to calls that specify a large number of memory pages. (CVE-2011-1746) - The agp_generic_remove_memory function in drivers/char/agp/generic.c in the Linux kernel before 2.6.38.5 did not validate a certain start parameter, which allowed local users to gain privileges or cause a denial of service (system crash) via a crafted AGPIOC_UNBIND agp_ioctl ioctl call, a different vulnerability than CVE-2011-1745. (CVE-2011-2022) - When using a setuid root mount.cifs, local users could hijack password protected mounted CIFS shares of other local users. (CVE-2011-1585) - The do_task_stat function in fs/proc/array.c in the Linux kernel did not perform an expected uid check, which made it easier for local users to defeat the ASLR protection mechanism by reading the start_code and end_code fields in the /proc/#####/stat file for a process executing a PIE binary. (CVE-2011-0726) - The normal mmap paths all avoid creating a mapping where the pgoff inside the mapping could wrap around due to overflow. However, an expanding mremap() can take such a non-wrapping mapping and make it bigger and cause a wrapping condition. (CVE-2011-2496) - A local unprivileged user able to access a NFS filesystem could use file locking to deadlock parts of an nfs server under some circumstance. (CVE-2011-2491) - The code for evaluating LDM partitions (in fs/partitions/ldm.c) contained bugs that could crash the kernel for certain corrupted LDM partitions. (CVE-2011-1017 / CVE-2011-2182) - Multiple integer overflows in the next_pidmap function in kernel/pid.c in the Linux kernel allowed local users to cause a denial of service (system crash) via a crafted (1) getdents or (2) readdir system call. (CVE-2011-1593) - Integer overflow in the _ctl_do_mpt_command function in drivers/scsi/mpt2sas/mpt2sas_ctl.c in the Linux kernel might have allowed local users to gain privileges or cause a denial of service (memory corruption) via an ioctl call specifying a crafted value that triggers a heap-based buffer overflow. (CVE-2011-1494) - drivers/scsi/mpt2sas/mpt2sas_ctl.c in the Linux kernel did not validate (1) length and (2) offset values before performing memory copy operations, which might have allowed local users to gain privileges, cause a denial of service (memory corruption), or obtain sensitive information from kernel memory via a crafted ioctl call, related to the _ctl_do_mpt_command and _ctl_diag_read_buffer functions. (CVE-2011-1495)
    last seen2020-06-01
    modified2020-06-02
    plugin id59158
    published2012-05-17
    reporterThis script is Copyright (C) 2012-2019 Tenable Network Security, Inc.
    sourcehttps://www.tenable.com/plugins/nessus/59158
    titleSuSE 10 Security Update : Linux kernel (ZYPP Patch Number 7665)
  • NASL familyRed Hat Local Security Checks
    NASL idREDHAT-RHSA-2011-0883.NASL
    descriptionUpdated kernel packages that fix several security issues and three bugs are now available for Red Hat Enterprise Linux 6.0 Extended Update Support. The Red Hat Security Response Team has rated this update as having important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The kernel packages contain the Linux kernel, the core of any Linux operating system. This update includes backported fixes for security issues. These issues, except for CVE-2011-1182, only affected users of Red Hat Enterprise Linux 6.0 Extended Update Support as they have already been addressed for users of Red Hat Enterprise Linux 6 in the 6.1 update, RHSA-2011:0542. Security fixes : * Buffer overflow flaws were found in the Linux kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id63986
    published2013-01-24
    reporterThis script is Copyright (C) 2013-2019 Tenable Network Security, Inc.
    sourcehttps://www.tenable.com/plugins/nessus/63986
    titleRHEL 6 : kernel (RHSA-2011:0883)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1159-1.NASL
    descriptionBrad Spengler discovered that the kernel did not correctly account for userspace memory allocations during exec() calls. A local attacker could exploit this to consume all system memory, leading to a denial of service. (CVE-2010-4243) Alexander Duyck discovered that the Intel Gigabit Ethernet driver did not correctly handle certain configurations. If such a device was configured without VLANs, a remote attacker could crash the system, leading to a denial of service. (CVE-2010-4263) Nelson Elhage discovered that Econet did not correctly handle AUN packets over UDP. A local attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2010-4342) Dan Rosenberg discovered that IRDA did not correctly check the size of buffers. On non-x86 systems, a local attacker could exploit this to read kernel heap memory, leading to a loss of privacy. (CVE-2010-4529) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system. (CVE-2011-1019) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Timo Warns discovered that OSF partition parsing routines did not correctly clear memory. A local attacker with physical access could plug in a specially crafted block device to read kernel memory, leading to a loss of privacy. (CVE-2011-1163) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Dan Rosenberg reported errors in the OSS (Open Sound System) MIDI interface. A local attacker on non-x86 systems might be able to cause a denial of service. (CVE-2011-1476) Dan Rosenberg reported errors in the kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id55589
    published2011-07-14
    reporterUbuntu Security Notice (C) 2011-2013 Canonical, Inc. / NASL script (C) 2011-2016 Tenable Network Security, Inc.
    sourcehttps://www.tenable.com/plugins/nessus/55589
    titleUbuntu 10.10 : linux-mvl-dove vulnerabilities (USN-1159-1)
  • NASL familyDebian Local Security Checks
    NASL idDEBIAN_DSA-2240.NASL
    descriptionSeveral vulnerabilities have been discovered in the Linux kernel that may lead to a denial of service or privilege escalation. The Common Vulnerabilities and Exposures project identifies the following problems : - CVE-2010-3875 Vasiliy Kulikov discovered an issue in the Linux implementation of the Amateur Radio AX.25 Level 2 protocol. Local users may obtain access to sensitive kernel memory. - CVE-2011-0695 Jens Kuehnel reported an issue in the InfiniBand stack. Remote attackers can exploit a race condition to cause a denial of service (kernel panic). - CVE-2011-0711 Dan Rosenberg reported an issue in the XFS filesystem. Local users may obtain access to sensitive kernel memory. - CVE-2011-0726 Kees Cook reported an issue in the /proc/pid/stat implementation. Local users could learn the text location of a process, defeating protections provided by address space layout randomization (ASLR). - CVE-2011-1016 Marek Olsak discovered an issue in the driver for ATI/AMD Radeon video chips. Local users could pass arbitrary values to video memory and the graphics translation table, resulting in denial of service or escalated privileges. On default Debian installations, this is exploitable only by members of the
    last seen2020-03-17
    modified2011-06-10
    plugin id55028
    published2011-06-10
    reporterThis script is Copyright (C) 2011-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/55028
    titleDebian DSA-2240-1 : linux-2.6 - privilege escalation/denial of service/information leak

Packetstorm

data sourcehttps://packetstormsecurity.com/files/download/105078/USN-1202-1.txt
idPACKETSTORM:105078
last seen2016-12-05
published2011-09-14
reporterUbuntu
sourcehttps://packetstormsecurity.com/files/105078/Ubuntu-Security-Notice-USN-1202-1.html
titleUbuntu Security Notice USN-1202-1

Redhat

advisories
rhsa
idRHSA-2011:0833
rpms
  • kernel-0:2.6.32-131.0.15.el6
  • kernel-bootwrapper-0:2.6.32-131.0.15.el6
  • kernel-debug-0:2.6.32-131.0.15.el6
  • kernel-debug-debuginfo-0:2.6.32-131.0.15.el6
  • kernel-debug-devel-0:2.6.32-131.0.15.el6
  • kernel-debuginfo-0:2.6.32-131.0.15.el6
  • kernel-debuginfo-common-i686-0:2.6.32-131.0.15.el6
  • kernel-debuginfo-common-ppc64-0:2.6.32-131.0.15.el6
  • kernel-debuginfo-common-s390x-0:2.6.32-131.0.15.el6
  • kernel-debuginfo-common-x86_64-0:2.6.32-131.0.15.el6
  • kernel-devel-0:2.6.32-131.0.15.el6
  • kernel-doc-0:2.6.32-131.0.15.el6
  • kernel-firmware-0:2.6.32-131.0.15.el6
  • kernel-headers-0:2.6.32-131.0.15.el6
  • kernel-kdump-0:2.6.32-131.0.15.el6
  • kernel-kdump-debuginfo-0:2.6.32-131.0.15.el6
  • kernel-kdump-devel-0:2.6.32-131.0.15.el6
  • perf-0:2.6.32-131.0.15.el6
  • perf-debuginfo-0:2.6.32-131.0.15.el6
  • kernel-0:2.6.18-238.12.1.el5
  • kernel-PAE-0:2.6.18-238.12.1.el5
  • kernel-PAE-debuginfo-0:2.6.18-238.12.1.el5
  • kernel-PAE-devel-0:2.6.18-238.12.1.el5
  • kernel-debug-0:2.6.18-238.12.1.el5
  • kernel-debug-debuginfo-0:2.6.18-238.12.1.el5
  • kernel-debug-devel-0:2.6.18-238.12.1.el5
  • kernel-debuginfo-0:2.6.18-238.12.1.el5
  • kernel-debuginfo-common-0:2.6.18-238.12.1.el5
  • kernel-devel-0:2.6.18-238.12.1.el5
  • kernel-doc-0:2.6.18-238.12.1.el5
  • kernel-headers-0:2.6.18-238.12.1.el5
  • kernel-kdump-0:2.6.18-238.12.1.el5
  • kernel-kdump-debuginfo-0:2.6.18-238.12.1.el5
  • kernel-kdump-devel-0:2.6.18-238.12.1.el5
  • kernel-xen-0:2.6.18-238.12.1.el5
  • kernel-xen-debuginfo-0:2.6.18-238.12.1.el5
  • kernel-xen-devel-0:2.6.18-238.12.1.el5
  • kernel-0:2.6.32-71.31.1.el6
  • kernel-bootwrapper-0:2.6.32-71.31.1.el6
  • kernel-debug-0:2.6.32-71.31.1.el6
  • kernel-debug-debuginfo-0:2.6.32-71.31.1.el6
  • kernel-debug-devel-0:2.6.32-71.31.1.el6
  • kernel-debuginfo-0:2.6.32-71.31.1.el6
  • kernel-debuginfo-common-i686-0:2.6.32-71.31.1.el6
  • kernel-debuginfo-common-ppc64-0:2.6.32-71.31.1.el6
  • kernel-debuginfo-common-s390x-0:2.6.32-71.31.1.el6
  • kernel-debuginfo-common-x86_64-0:2.6.32-71.31.1.el6
  • kernel-devel-0:2.6.32-71.31.1.el6
  • kernel-doc-0:2.6.32-71.31.1.el6
  • kernel-firmware-0:2.6.32-71.31.1.el6
  • kernel-headers-0:2.6.32-71.31.1.el6
  • kernel-kdump-0:2.6.32-71.31.1.el6
  • kernel-kdump-debuginfo-0:2.6.32-71.31.1.el6
  • kernel-kdump-devel-0:2.6.32-71.31.1.el6
  • perf-0:2.6.32-71.31.1.el6
  • kernel-rt-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-debug-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-debug-debuginfo-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-debug-devel-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-debuginfo-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-debuginfo-common-x86_64-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-devel-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-doc-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-firmware-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-trace-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-trace-debuginfo-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-trace-devel-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-vanilla-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-vanilla-debuginfo-0:2.6.33.9-rt31.75.el6rt
  • kernel-rt-vanilla-devel-0:2.6.33.9-rt31.75.el6rt