Vulnerabilities > CVE-2011-1173 - Information Exposure vulnerability in Linux Kernel

047910
CVSS 0.0 - NONE
Attack vector
UNKNOWN
Attack complexity
UNKNOWN
Privileges required
UNKNOWN
Confidentiality impact
UNKNOWN
Integrity impact
UNKNOWN
Availability impact
UNKNOWN

Summary

The econet_sendmsg function in net/econet/af_econet.c in the Linux kernel before 2.6.39 on the x86_64 platform allows remote attackers to obtain potentially sensitive information from kernel stack memory by reading uninitialized data in the ah field of an Acorn Universal Networking (AUN) packet.

Vulnerable Configurations

Part Description Count
OS
Linux
1284

Common Weakness Enumeration (CWE)

Common Attack Pattern Enumeration and Classification (CAPEC)

  • Subverting Environment Variable Values
    The attacker directly or indirectly modifies environment variables used by or controlling the target software. The attacker's goal is to cause the target software to deviate from its expected operation in a manner that benefits the attacker.
  • Footprinting
    An attacker engages in probing and exploration activity to identify constituents and properties of the target. Footprinting is a general term to describe a variety of information gathering techniques, often used by attackers in preparation for some attack. It consists of using tools to learn as much as possible about the composition, configuration, and security mechanisms of the targeted application, system or network. Information that might be collected during a footprinting effort could include open ports, applications and their versions, network topology, and similar information. While footprinting is not intended to be damaging (although certain activities, such as network scans, can sometimes cause disruptions to vulnerable applications inadvertently) it may often pave the way for more damaging attacks.
  • Exploiting Trust in Client (aka Make the Client Invisible)
    An attack of this type exploits a programs' vulnerabilities in client/server communication channel authentication and data integrity. It leverages the implicit trust a server places in the client, or more importantly, that which the server believes is the client. An attacker executes this type of attack by placing themselves in the communication channel between client and server such that communication directly to the server is possible where the server believes it is communicating only with a valid client. There are numerous variations of this type of attack.
  • Browser Fingerprinting
    An attacker carefully crafts small snippets of Java Script to efficiently detect the type of browser the potential victim is using. Many web-based attacks need prior knowledge of the web browser including the version of browser to ensure successful exploitation of a vulnerability. Having this knowledge allows an attacker to target the victim with attacks that specifically exploit known or zero day weaknesses in the type and version of the browser used by the victim. Automating this process via Java Script as a part of the same delivery system used to exploit the browser is considered more efficient as the attacker can supply a browser fingerprinting method and integrate it with exploit code, all contained in Java Script and in response to the same web page request by the browser.
  • Session Credential Falsification through Prediction
    This attack targets predictable session ID in order to gain privileges. The attacker can predict the session ID used during a transaction to perform spoofing and session hijacking.

Nessus

  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1141-1.NASL
    descriptionBrad Spengler discovered that the kernel did not correctly account for userspace memory allocations during exec() calls. A local attacker could exploit this to consume all system memory, leading to a denial of service. (CVE-2010-4243) Alexander Duyck discovered that the Intel Gigabit Ethernet driver did not correctly handle certain configurations. If such a device was configured without VLANs, a remote attacker could crash the system, leading to a denial of service. (CVE-2010-4263) Nelson Elhage discovered that Econet did not correctly handle AUN packets over UDP. A local attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2010-4342) Dan Rosenberg discovered that IRDA did not correctly check the size of buffers. On non-x86 systems, a local attacker could exploit this to read kernel heap memory, leading to a loss of privacy. (CVE-2010-4529) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Kees Cook discovered that the IOWarrior USB device driver did not correctly check certain size fields. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2010-4656) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Dan Carpenter discovered that the TTPCI DVB driver did not check certain values during an ioctl. If the dvb-ttpci module was loaded, a local attacker could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-0521) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Rafael Dominguez Vega discovered that the caiaq Native Instruments USB driver did not correctly validate string lengths. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2011-0712) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Timo Warns discovered that MAC partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system or potentially gain root privileges. (CVE-2011-1010) Timo Warns discovered that LDM partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1012) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016) Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system. (CVE-2011-1019) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Nelson Elhage discovered that the epoll subsystem did not correctly handle certain structures. A local attacker could create malicious requests that would hang the system, leading to a denial of service. (CVE-2011-1082) Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Dan Rosenberg reported errors in the OSS (Open Sound System) MIDI interface. A local attacker on non-x86 systems might be able to cause a denial of service. (CVE-2011-1476) Dan Rosenberg reported errors in the kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id55104
    published2011-06-13
    reporterUbuntu Security Notice (C) 2011-2019 Canonical, Inc. / NASL script (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/55104
    titleUbuntu 10.04 LTS : linux, linux-ec2 vulnerabilities (USN-1141-1)
    code
    #
    # (C) Tenable Network Security, Inc.
    #
    # The descriptive text and package checks in this plugin were
    # extracted from Ubuntu Security Notice USN-1141-1. The text 
    # itself is copyright (C) Canonical, Inc. See 
    # <http://www.ubuntu.com/usn/>. Ubuntu(R) is a registered 
    # trademark of Canonical, Inc.
    #
    
    include("compat.inc");
    
    if (description)
    {
      script_id(55104);
      script_version("1.14");
      script_cvs_date("Date: 2019/09/19 12:54:27");
    
      script_cve_id("CVE-2010-4243", "CVE-2010-4263", "CVE-2010-4342", "CVE-2010-4529", "CVE-2010-4565", "CVE-2010-4656", "CVE-2011-0463", "CVE-2011-0521", "CVE-2011-0695", "CVE-2011-0711", "CVE-2011-0712", "CVE-2011-0726", "CVE-2011-1010", "CVE-2011-1012", "CVE-2011-1013", "CVE-2011-1016", "CVE-2011-1019", "CVE-2011-1078", "CVE-2011-1079", "CVE-2011-1080", "CVE-2011-1082", "CVE-2011-1083", "CVE-2011-1093", "CVE-2011-1160", "CVE-2011-1170", "CVE-2011-1171", "CVE-2011-1172", "CVE-2011-1173", "CVE-2011-1180", "CVE-2011-1182", "CVE-2011-1476", "CVE-2011-1477", "CVE-2011-1478", "CVE-2011-1573", "CVE-2011-2534", "CVE-2011-3359", "CVE-2011-4611", "CVE-2011-4913");
      script_bugtraq_id(44661, 45004, 45208, 45321, 45556, 45986, 46069, 46419, 46492, 46512, 46557, 46630, 46839, 47003, 47116, 47639, 47791, 47792);
      script_xref(name:"USN", value:"1141-1");
    
      script_name(english:"Ubuntu 10.04 LTS : linux, linux-ec2 vulnerabilities (USN-1141-1)");
      script_summary(english:"Checks dpkg output for updated packages.");
    
      script_set_attribute(
        attribute:"synopsis", 
        value:
    "The remote Ubuntu host is missing one or more security-related
    patches."
      );
      script_set_attribute(
        attribute:"description", 
        value:
    "Brad Spengler discovered that the kernel did not correctly account for
    userspace memory allocations during exec() calls. A local attacker
    could exploit this to consume all system memory, leading to a denial
    of service. (CVE-2010-4243)
    
    Alexander Duyck discovered that the Intel Gigabit Ethernet driver did
    not correctly handle certain configurations. If such a device was
    configured without VLANs, a remote attacker could crash the system,
    leading to a denial of service. (CVE-2010-4263)
    
    Nelson Elhage discovered that Econet did not correctly handle AUN
    packets over UDP. A local attacker could send specially crafted
    traffic to crash the system, leading to a denial of service.
    (CVE-2010-4342)
    
    Dan Rosenberg discovered that IRDA did not correctly check the size of
    buffers. On non-x86 systems, a local attacker could exploit this to
    read kernel heap memory, leading to a loss of privacy. (CVE-2010-4529)
    
    Dan Rosenburg discovered that the CAN subsystem leaked kernel
    addresses into the /proc filesystem. A local attacker could use this
    to increase the chances of a successful memory corruption exploit.
    (CVE-2010-4565)
    
    Kees Cook discovered that the IOWarrior USB device driver did not
    correctly check certain size fields. A local attacker with physical
    access could plug in a specially crafted USB device to crash the
    system or potentially gain root privileges. (CVE-2010-4656)
    
    Goldwyn Rodrigues discovered that the OCFS2 filesystem did not
    correctly clear memory when writing certain file holes. A local
    attacker could exploit this to read uninitialized data from the disk,
    leading to a loss of privacy. (CVE-2011-0463)
    
    Dan Carpenter discovered that the TTPCI DVB driver did not check
    certain values during an ioctl. If the dvb-ttpci module was loaded, a
    local attacker could exploit this to crash the system, leading to a
    denial of service, or possibly gain root privileges. (CVE-2011-0521)
    
    Jens Kuehnel discovered that the InfiniBand driver contained a race
    condition. On systems using InfiniBand, a local attacker could send
    specially crafted requests to crash the system, leading to a denial of
    service. (CVE-2011-0695)
    
    Dan Rosenberg discovered that XFS did not correctly initialize memory.
    A local attacker could make crafted ioctl calls to leak portions of
    kernel stack memory, leading to a loss of privacy. (CVE-2011-0711)
    
    Rafael Dominguez Vega discovered that the caiaq Native Instruments USB
    driver did not correctly validate string lengths. A local attacker
    with physical access could plug in a specially crafted USB device to
    crash the system or potentially gain root privileges. (CVE-2011-0712)
    
    Kees Cook reported that /proc/pid/stat did not correctly filter
    certain memory locations. A local attacker could determine the memory
    layout of processes in an attempt to increase the chances of a
    successful memory corruption exploit. (CVE-2011-0726)
    
    Timo Warns discovered that MAC partition parsing routines did not
    correctly calculate block counts. A local attacker with physical
    access could plug in a specially crafted block device to crash the
    system or potentially gain root privileges. (CVE-2011-1010)
    
    Timo Warns discovered that LDM partition parsing routines did not
    correctly calculate block counts. A local attacker with physical
    access could plug in a specially crafted block device to crash the
    system, leading to a denial of service. (CVE-2011-1012)
    
    Matthiew Herrb discovered that the drm modeset interface did not
    correctly handle a signed comparison. A local attacker could exploit
    this to crash the system or possibly gain root privileges.
    (CVE-2011-1013)
    
    Marek Olsak discovered that the Radeon GPU drivers did not correctly
    validate certain registers. On systems with specific hardware, a local
    attacker could exploit this to write to arbitrary video memory.
    (CVE-2011-1016)
    
    Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not
    needed to load kernel modules. A local attacker with the CAP_NET_ADMIN
    capability could load existing kernel modules, possibly increasing the
    attack surface available on the system. (CVE-2011-1019)
    
    Vasiliy Kulikov discovered that the Bluetooth stack did not correctly
    clear memory. A local attacker could exploit this to read kernel stack
    memory, leading to a loss of privacy. (CVE-2011-1078)
    
    Vasiliy Kulikov discovered that the Bluetooth stack did not correctly
    check that device name strings were NULL terminated. A local attacker
    could exploit this to crash the system, leading to a denial of
    service, or leak contents of kernel stack memory, leading to a loss of
    privacy. (CVE-2011-1079)
    
    Vasiliy Kulikov discovered that bridge network filtering did not check
    that name fields were NULL terminated. A local attacker could exploit
    this to leak contents of kernel stack memory, leading to a loss of
    privacy. (CVE-2011-1080)
    
    Nelson Elhage discovered that the epoll subsystem did not correctly
    handle certain structures. A local attacker could create malicious
    requests that would hang the system, leading to a denial of service.
    (CVE-2011-1082)
    
    Johan Hovold discovered that the DCCP network stack did not correctly
    handle certain packet combinations. A remote attacker could send
    specially crafted network traffic that would crash the system, leading
    to a denial of service. (CVE-2011-1093)
    
    Peter Huewe discovered that the TPM device did not correctly
    initialize memory. A local attacker could exploit this to read kernel
    heap memory contents, leading to a loss of privacy. (CVE-2011-1160)
    
    Vasiliy Kulikov discovered that the netfilter code did not check
    certain strings copied from userspace. A local attacker with netfilter
    access could exploit this to read kernel memory or crash the system,
    leading to a denial of service. (CVE-2011-1170, CVE-2011-1171,
    CVE-2011-1172, CVE-2011-2534)
    
    Vasiliy Kulikov discovered that the Acorn Universal Networking driver
    did not correctly initialize memory. A remote attacker could send
    specially crafted traffic to read kernel stack memory, leading to a
    loss of privacy. (CVE-2011-1173)
    
    Dan Rosenberg discovered that the IRDA subsystem did not correctly
    check certain field sizes. If a system was using IRDA, a remote
    attacker could send specially crafted traffic to crash the system or
    gain root privileges. (CVE-2011-1180)
    
    Julien Tinnes discovered that the kernel did not correctly validate
    the signal structure from tkill(). A local attacker could exploit this
    to send signals to arbitrary threads, possibly bypassing expected
    restrictions. (CVE-2011-1182)
    
    Dan Rosenberg reported errors in the OSS (Open Sound System) MIDI
    interface. A local attacker on non-x86 systems might be able to cause
    a denial of service. (CVE-2011-1476)
    
    Dan Rosenberg reported errors in the kernel's OSS (Open Sound System)
    driver for Yamaha FM synthesizer chips. A local user can exploit this
    to cause memory corruption, causing a denial of service or privilege
    escalation. (CVE-2011-1477)
    
    Ryan Sweat discovered that the GRO code did not correctly validate
    memory. In some configurations on systems using VLANs, a remote
    attacker could send specially crafted traffic to crash the system,
    leading to a denial of service. (CVE-2011-1478)
    
    It was discovered that the Stream Control Transmission Protocol (SCTP)
    implementation incorrectly calculated lengths. If the
    net.sctp.addip_enable variable was turned on, a remote attacker could
    send specially crafted traffic to crash the system. (CVE-2011-1573)
    
    A flaw was found in the b43 driver in the Linux kernel. An attacker
    could use this flaw to cause a denial of service if the system has an
    active wireless interface using the b43 driver. (CVE-2011-3359)
    
    Maynard Johnson discovered that on POWER7, certain speculative events
    may raise a performance monitor exception. A local attacker could
    exploit this to crash the system, leading to a denial of service.
    (CVE-2011-4611)
    
    Dan Rosenberg discovered flaws in the linux Rose (X.25 PLP) layer used
    by amateur radio. A local user or a remote user on an X.25 network
    could exploit these flaws to execute arbitrary code as root.
    (CVE-2011-4913).
    
    Note that Tenable Network Security has extracted the preceding
    description block directly from the Ubuntu security advisory. Tenable
    has attempted to automatically clean and format it as much as possible
    without introducing additional issues."
      );
      script_set_attribute(
        attribute:"see_also",
        value:"https://usn.ubuntu.com/1141-1/"
      );
      script_set_attribute(attribute:"solution", value:"Update the affected packages.");
      script_set_cvss_base_vector("CVSS2#AV:N/AC:L/Au:N/C:N/I:N/A:C");
      script_set_cvss_temporal_vector("CVSS2#E:POC/RL:OF/RC:C");
      script_set_attribute(attribute:"exploitability_ease", value:"Exploits are available");
      script_set_attribute(attribute:"exploit_available", value:"true");
    
      script_set_attribute(attribute:"plugin_type", value:"local");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-386");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-ec2");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-generic");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-generic-pae");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-lpia");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-preempt");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-server");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-versatile");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-virtual");
      script_set_attribute(attribute:"cpe", value:"cpe:/o:canonical:ubuntu_linux:10.04:-:lts");
    
      script_set_attribute(attribute:"vuln_publication_date", value:"2010/12/29");
      script_set_attribute(attribute:"patch_publication_date", value:"2011/05/31");
      script_set_attribute(attribute:"plugin_publication_date", value:"2011/06/13");
      script_set_attribute(attribute:"generated_plugin", value:"current");
      script_end_attributes();
    
      script_category(ACT_GATHER_INFO);
      script_copyright(english:"Ubuntu Security Notice (C) 2011-2019 Canonical, Inc. / NASL script (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.");
      script_family(english:"Ubuntu Local Security Checks");
    
      script_dependencies("ssh_get_info.nasl", "linux_alt_patch_detect.nasl");
      script_require_keys("Host/cpu", "Host/Ubuntu", "Host/Ubuntu/release", "Host/Debian/dpkg-l");
    
      exit(0);
    }
    
    
    include("audit.inc");
    include("ubuntu.inc");
    include("ksplice.inc");
    
    if ( ! get_kb_item("Host/local_checks_enabled") ) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED);
    release = get_kb_item("Host/Ubuntu/release");
    if ( isnull(release) ) audit(AUDIT_OS_NOT, "Ubuntu");
    release = chomp(release);
    if (! preg(pattern:"^(10\.04)$", string:release)) audit(AUDIT_OS_NOT, "Ubuntu 10.04", "Ubuntu " + release);
    if ( ! get_kb_item("Host/Debian/dpkg-l") ) audit(AUDIT_PACKAGE_LIST_MISSING);
    
    cpu = get_kb_item("Host/cpu");
    if (isnull(cpu)) audit(AUDIT_UNKNOWN_ARCH);
    if ("x86_64" >!< cpu && cpu !~ "^i[3-6]86$") audit(AUDIT_LOCAL_CHECKS_NOT_IMPLEMENTED, "Ubuntu", cpu);
    
    if (get_one_kb_item("Host/ksplice/kernel-cves"))
    {
      rm_kb_item(name:"Host/uptrack-uname-r");
      cve_list = make_list("CVE-2010-4243", "CVE-2010-4263", "CVE-2010-4342", "CVE-2010-4529", "CVE-2010-4565", "CVE-2010-4656", "CVE-2011-0463", "CVE-2011-0521", "CVE-2011-0695", "CVE-2011-0711", "CVE-2011-0712", "CVE-2011-0726", "CVE-2011-1010", "CVE-2011-1012", "CVE-2011-1013", "CVE-2011-1016", "CVE-2011-1019", "CVE-2011-1078", "CVE-2011-1079", "CVE-2011-1080", "CVE-2011-1082", "CVE-2011-1083", "CVE-2011-1093", "CVE-2011-1160", "CVE-2011-1170", "CVE-2011-1171", "CVE-2011-1172", "CVE-2011-1173", "CVE-2011-1180", "CVE-2011-1182", "CVE-2011-1476", "CVE-2011-1477", "CVE-2011-1478", "CVE-2011-1573", "CVE-2011-2534", "CVE-2011-3359", "CVE-2011-4611", "CVE-2011-4913");
      if (ksplice_cves_check(cve_list))
      {
        audit(AUDIT_PATCH_INSTALLED, "KSplice hotfix for USN-1141-1");
      }
      else
      {
        _ubuntu_report = ksplice_reporting_text();
      }
    }
    
    flag = 0;
    
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-316-ec2", pkgver:"2.6.32-316.31")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-32-386", pkgver:"2.6.32-32.62")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-32-generic", pkgver:"2.6.32-32.62")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-32-generic-pae", pkgver:"2.6.32-32.62")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-32-lpia", pkgver:"2.6.32-32.62")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-32-preempt", pkgver:"2.6.32-32.62")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-32-server", pkgver:"2.6.32-32.62")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-32-versatile", pkgver:"2.6.32-32.62")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-32-virtual", pkgver:"2.6.32-32.62")) flag++;
    
    if (flag)
    {
      security_report_v4(
        port       : 0,
        severity   : SECURITY_HOLE,
        extra      : ubuntu_report_get()
      );
      exit(0);
    }
    else
    {
      tested = ubuntu_pkg_tests_get();
      if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested);
      else audit(AUDIT_PACKAGE_NOT_INSTALLED, "linux-image-2.6-386 / linux-image-2.6-ec2 / linux-image-2.6-generic / etc");
    }
    
  • NASL familySuSE Local Security Checks
    NASL idOPENSUSE-2012-756.NASL
    descriptionThe openSUSE 11.4 kernel was updated to fix various bugs and security issues. This is the final update of the 2.6.37 kernel of openSUSE 11.4.
    last seen2020-06-05
    modified2014-06-13
    plugin id74801
    published2014-06-13
    reporterThis script is Copyright (C) 2014-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/74801
    titleopenSUSE Security Update : kernel (openSUSE-SU-2012:1439-1)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1186-1.NASL
    descriptionDan Rosenberg discovered that IPC structures were not correctly initialized on 64bit systems. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4073) Steve Chen discovered that setsockopt did not correctly check MSS values. A local attacker could make a specially crafted socket call to crash the system, leading to a denial of service. (CVE-2010-4165) Vladymyr Denysov discovered that Xen virtual CD-ROM devices were not handled correctly. A local attacker in a guest could make crafted blkback requests that would crash the host, leading to a denial of service. (CVE-2010-4238) Vegard Nossum discovered that memory garbage collection was not handled correctly for active sockets. A local attacker could exploit this to allocate all available kernel memory, leading to a denial of service. (CVE-2010-4249) Dan Carpenter discovered that the Infiniband driver did not correctly handle certain requests. A local user could exploit this to crash the system or potentially gain root privileges. (CVE-2010-4649, CVE-2011-1044) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Timo Warns discovered that MAC partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system or potentially gain root privileges. (CVE-2011-1010) Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Vasiliy Kulikov discovered that taskstats listeners were not correctly handled. A local attacker could exploit this to exhaust memory and CPU resources, leading to a denial of service. (CVE-2011-2484). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen2020-06-01
    modified2020-06-02
    plugin id55784
    published2011-08-09
    reporterUbuntu Security Notice (C) 2011-2019 Canonical, Inc. / NASL script (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/55784
    titleUbuntu 8.04 LTS : linux vulnerabilities (USN-1186-1)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1187-1.NASL
    descriptionIt was discovered that KVM did not correctly initialize certain CPU registers. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-3698) Thomas Pollet discovered that the RDS network protocol did not check certain iovec buffers. A local attacker could exploit this to crash the system or possibly execute arbitrary code as the root user. (CVE-2010-3865) Vasiliy Kulikov discovered that the Linux kernel X.25 implementation did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3875) Vasiliy Kulikov discovered that the Linux kernel sockets implementation did not properly initialize certain structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3876) Vasiliy Kulikov discovered that the TIPC interface did not correctly initialize certain structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3877) Nelson Elhage discovered that the Linux kernel IPv4 implementation did not properly audit certain bytecodes in netlink messages. A local attacker could exploit this to cause the kernel to hang, leading to a denial of service. (CVE-2010-3880) Vasiliy Kulikov discovered that kvm did not correctly clear memory. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy. (CVE-2010-3881) Dan Rosenberg discovered that multiple terminal ioctls did not correctly initialize structure memory. A local attacker could exploit this to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4075, CVE-2010-4076, CVE-2010-4077) Dan Rosenberg discovered that the ivtv V4L driver did not correctly initialize certian structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4079) Dan Rosenberg discovered that the semctl syscall did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4083) Dan Rosenberg discovered that the SCSI subsystem did not correctly validate iov segments. A local attacker with access to a SCSI device could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2010-4163, CVE-2010-4668) It was discovered that multithreaded exec did not handle CPU timers correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4248) Nelson Elhage discovered that Econet did not correctly handle AUN packets over UDP. A local attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2010-4342) Tavis Ormandy discovered that the install_special_mapping function could bypass the mmap_min_addr restriction. A local attacker could exploit this to mmap 4096 bytes below the mmap_min_addr area, possibly improving the chances of performing NULL pointer dereference attacks. (CVE-2010-4346) Dan Rosenberg discovered that the OSS subsystem did not handle name termination correctly. A local attacker could exploit this crash the system or gain root privileges. (CVE-2010-4527) Dan Rosenberg discovered that IRDA did not correctly check the size of buffers. On non-x86 systems, a local attacker could exploit this to read kernel heap memory, leading to a loss of privacy. (CVE-2010-4529) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Dan Carpenter discovered that the Infiniband driver did not correctly handle certain requests. A local user could exploit this to crash the system or potentially gain root privileges. (CVE-2010-4649, CVE-2011-1044) Kees Cook discovered that the IOWarrior USB device driver did not correctly check certain size fields. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2010-4656) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Dan Carpenter discovered that the TTPCI DVB driver did not check certain values during an ioctl. If the dvb-ttpci module was loaded, a local attacker could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-0521) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Rafael Dominguez Vega discovered that the caiaq Native Instruments USB driver did not correctly validate string lengths. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2011-0712) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Timo Warns discovered that MAC partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system or potentially gain root privileges. (CVE-2011-1010) Timo Warns discovered that LDM partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1012) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system. (CVE-2011-1019) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Nelson Elhage discovered that the epoll subsystem did not correctly handle certain structures. A local attacker could create malicious requests that would hang the system, leading to a denial of service. (CVE-2011-1082) Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090) Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Timo Warns discovered that OSF partition parsing routines did not correctly clear memory. A local attacker with physical access could plug in a specially crafted block device to read kernel memory, leading to a loss of privacy. (CVE-2011-1163) Dan Rosenberg discovered that some ALSA drivers did not correctly check the adapter index during ioctl calls. If this driver was loaded, a local attacker could make a specially crafted ioctl call to gain root privileges. (CVE-2011-1169) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Ryan Sweat discovered that the GRO code did not correctly validate memory. In some configurations on systems using VLANs, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1478) Dan Rosenberg discovered that MPT devices did not correctly validate certain values in ioctl calls. If these drivers were loaded, a local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2011-1494, CVE-2011-1495) Timo Warns discovered that the GUID partition parsing routines did not correctly validate certain structures. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1577) Tavis Ormandy discovered that the pidmap function did not correctly handle large requests. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1593) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598, CVE-2011-1748) Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl values. A local attacker with access to the video subsystem could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-1745, CVE-2011-2022) Vasiliy Kulikov discovered that the AGP driver did not check the size of certain memory allocations. A local attacker with access to the video subsystem could exploit this to run the system out of memory, leading to a denial of service. (CVE-2011-1746). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen2020-06-01
    modified2020-06-02
    plugin id55785
    published2011-08-09
    reporterUbuntu Security Notice (C) 2011-2019 Canonical, Inc. / NASL script (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/55785
    titleUbuntu 10.04 LTS : linux-lts-backport-maverick vulnerabilities (USN-1187-1)
  • NASL familySuSE Local Security Checks
    NASL idSUSE_KERNEL-7918.NASL
    descriptionThis Linux kernel update fixes various security issues and bugs in the SUSE Linux Enterprise 10 SP4 kernel. This update fixes the following security issues : - X.25 remote DoS. (CVE-2010-3873). (bnc#651219) - X.25 remote Dos. (CVE-2010-4164). (bnc#653260) - 1 socket local DoS. (CVE-2010-4249). (bnc#655696) - ebtables infoleak. (CVE-2011-1080). (bnc#676602) - netfilter: arp_tables infoleak to userspace. (CVE-2011-1170). (bnc#681180) - netfilter: ip_tables infoleak to userspace. (CVE-2011-1171). (bnc#681181) - netfilter: ip6_tables infoleak to userspace. (CVE-2011-1172). (bnc#681185) - econet 4 byte infoleak. (CVE-2011-1173). (bnc#681186) - hfs NULL pointer dereference. (CVE-2011-2203). (bnc#699709) - inet_diag infinite loop. (CVE-2011-2213). (bnc#700879) - netfilter: ipt_CLUSTERIP buffer overflow. (CVE-2011-2534). (bnc#702037) - ipv6: make fragment identifications less predictable. (CVE-2011-2699). (bnc#707288) - clock_gettime() panic. (CVE-2011-3209). (bnc#726064) - qdisc NULL dereference (CVE-2011-2525) This update also fixes the following non-security issues:. (bnc#735612) - New timesource for VMware platform. (bnc#671124) - usblp crashes after the printer is unplugged for the second time. (bnc#673343) - Data corruption with mpt2sas driver. (bnc#704253) - NIC Bond no longer works when booting the XEN kernel. (bnc#716437) -
    last seen2020-06-05
    modified2012-01-24
    plugin id57659
    published2012-01-24
    reporterThis script is Copyright (C) 2012-2020 Tenable Network Security, Inc.
    sourcehttps://www.tenable.com/plugins/nessus/57659
    titleSuSE 10 Security Update : Linux kernel (ZYPP Patch Number 7918)
  • NASL familySuSE Local Security Checks
    NASL idSUSE_11_KERNEL-110718.NASL
    descriptionThe SUSE Linux Enterprise 11 Service Pack 1 kernel was updated to 2.6.32.43 and fixes various bugs and security issues. The following security issues were fixed : - The normal mmap paths all avoid creating a mapping where the pgoff inside the mapping could wrap around due to overflow. However, an expanding mremap() can take such a non-wrapping mapping and make it bigger and cause a wrapping condition. (CVE-2011-2496) - A local unprivileged user able to access a NFS filesystem could use file locking to deadlock parts of an nfs server under some circumstance. (CVE-2011-2491) - Fixed a race between ksmd and other memory management code, which could result in a NULL ptr dereference and kernel crash. (CVE-2011-2183) - In both trigger_scan and sched_scan operations, we were checking for the SSID length before assigning the value correctly. Since the memory was just kzalloced, the check was always failing and SSID with over 32 characters were allowed to go through. This required CAP_NET_ADMIN privileges to be exploited. (CVE-2011-2517) - A malicious user or buggy application could inject diagnosing byte code and trigger an infinite loop in inet_diag_bc_audit(). (CVE-2011-2213) - The code for evaluating LDM partitions (in fs/partitions/ldm.c) contained bugs that could crash the kernel for certain corrupted LDM partitions. (CVE-2011-1017 / CVE-2011-1012 / CVE-2011-2182) - Multiple integer overflows in the next_pidmap function in kernel/pid.c in the Linux kernel allowed local users to cause a denial of service (system crash) via a crafted (1) getdents or (2) readdir system call. (CVE-2011-1593) - The proc filesystem implementation in the Linux kernel did not restrict access to the /proc directory tree of a process after this process performs an exec of a setuid program, which allowed local users to obtain sensitive information or cause a denial of service via open, lseek, read, and write system calls. (CVE-2011-1020) - When using a setuid root mount.cifs, local users could hijack password protected mounted CIFS shares of other local users. (CVE-2011-1585) - Kernel information via the TPM devices could by used by local attackers to read kernel memory. (CVE-2011-1160) - The Linux kernel automatically evaluated partition tables of storage devices. The code for evaluating EFI GUID partitions (in fs/partitions/efi.c) contained a bug that causes a kernel oops on certain corrupted GUID partition tables, which might be used by local attackers to crash the kernel or potentially execute code. (CVE-2011-1577) - In a bluetooth ioctl, struct sco_conninfo has one padding byte in the end. Local variable cinfo of type sco_conninfo was copied to userspace with this uninizialized one byte, leading to an old stack contents leak. (CVE-2011-1078) - In a bluetooth ioctl, struct ca is copied from userspace. It was not checked whether the
    last seen2020-06-01
    modified2020-06-02
    plugin id55686
    published2011-07-26
    reporterThis script is Copyright (C) 2011-2019 Tenable Network Security, Inc.
    sourcehttps://www.tenable.com/plugins/nessus/55686
    titleSuSE 11.1 Security Update : Linux kernel (SAT Patch Numbers 4884 / 4888 / 4889)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1167-1.NASL
    descriptionAristide Fattori and Roberto Paleari reported a flaw in the Linux kernel
    last seen2020-03-18
    modified2011-07-14
    plugin id55591
    published2011-07-14
    reporterUbuntu Security Notice (C) 2011-2020 Canonical, Inc. / NASL script (C) 2011-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/55591
    titleUbuntu 11.04 : linux vulnerabilities (USN-1167-1)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1202-1.NASL
    descriptionDan Rosenberg discovered that several network ioctls did not clear kernel memory correctly. A local user could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3296, CVE-2010-3297) Brad Spengler discovered that stack memory for new a process was not correctly calculated. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-3858) Dan Rosenberg discovered that the Linux kernel TIPC implementation contained multiple integer signedness errors. A local attacker could exploit this to gain root privileges. (CVE-2010-3859) Dan Rosenberg discovered that the CAN protocol on 64bit systems did not correctly calculate the size of certain buffers. A local attacker could exploit this to crash the system or possibly execute arbitrary code as the root user. (CVE-2010-3874) Nelson Elhage discovered that the Linux kernel IPv4 implementation did not properly audit certain bytecodes in netlink messages. A local attacker could exploit this to cause the kernel to hang, leading to a denial of service. (CVE-2010-3880) Dan Rosenberg discovered that IPC structures were not correctly initialized on 64bit systems. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4073) Dan Rosenberg discovered that multiple terminal ioctls did not correctly initialize structure memory. A local attacker could exploit this to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4075, CVE-2010-4076, CVE-2010-4077) Dan Rosenberg discovered that the RME Hammerfall DSP audio interface driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4080, CVE-2010-4081) Dan Rosenberg discovered that the VIA video driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4082) Dan Rosenberg discovered that the semctl syscall did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4083) James Bottomley discovered that the ICP vortex storage array controller driver did not validate certain sizes. A local attacker on a 64bit system could exploit this to crash the kernel, leading to a denial of service. (CVE-2010-4157) Dan Rosenberg discovered that the Linux kernel L2TP implementation contained multiple integer signedness errors. A local attacker could exploit this to to crash the kernel, or possibly gain root privileges. (CVE-2010-4160) Dan Rosenberg discovered that certain iovec operations did not calculate page counts correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4162) Dan Rosenberg discovered that the SCSI subsystem did not correctly validate iov segments. A local attacker with access to a SCSI device could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2010-4163, CVE-2010-4668) Dave Jones discovered that the mprotect system call did not correctly handle merged VMAs. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4169) Dan Rosenberg discovered that the RDS protocol did not correctly check ioctl arguments. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4175) Alan Cox discovered that the HCI UART driver did not correctly check if a write operation was available. If the mmap_min-addr sysctl was changed from the Ubuntu default to a value of 0, a local attacker could exploit this flaw to gain root privileges. (CVE-2010-4242) Brad Spengler discovered that the kernel did not correctly account for userspace memory allocations during exec() calls. A local attacker could exploit this to consume all system memory, leading to a denial of service. (CVE-2010-4243) It was discovered that multithreaded exec did not handle CPU timers correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4248) It was discovered that named pipes did not correctly handle certain fcntl calls. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4256) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Dan Carpenter discovered that the Infiniband driver did not correctly handle certain requests. A local user could exploit this to crash the system or potentially gain root privileges. (CVE-2010-4649, CVE-2011-1044) Kees Cook discovered that some ethtool functions did not correctly clear heap memory. A local attacker with CAP_NET_ADMIN privileges could exploit this to read portions of kernel heap memory, leading to a loss of privacy. (CVE-2010-4655) Kees Cook discovered that the IOWarrior USB device driver did not correctly check certain size fields. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2010-4656) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Dan Carpenter discovered that the TTPCI DVB driver did not check certain values during an ioctl. If the dvb-ttpci module was loaded, a local attacker could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-0521) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Rafael Dominguez Vega discovered that the caiaq Native Instruments USB driver did not correctly validate string lengths. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2011-0712) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Timo Warns discovered that MAC partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system or potentially gain root privileges. (CVE-2011-1010) Timo Warns discovered that LDM partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1012) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system. (CVE-2011-1019) It was discovered that the /proc filesystem did not correctly handle permission changes when programs executed. A local attacker could hold open files to examine details about programs running with higher privileges, potentially increasing the chances of exploiting additional vulnerabilities. (CVE-2011-1020) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Nelson Elhage discovered that the epoll subsystem did not correctly handle certain structures. A local attacker could create malicious requests that would hang the system, leading to a denial of service. (CVE-2011-1082) Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090) Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Timo Warns discovered that OSF partition parsing routines did not correctly clear memory. A local attacker with physical access could plug in a specially crafted block device to read kernel memory, leading to a loss of privacy. (CVE-2011-1163) Dan Rosenberg discovered that some ALSA drivers did not correctly check the adapter index during ioctl calls. If this driver was loaded, a local attacker could make a specially crafted ioctl call to gain root privileges. (CVE-2011-1169) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Ryan Sweat discovered that the GRO code did not correctly validate memory. In some configurations on systems using VLANs, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1478) Dan Rosenberg discovered that the X.25 Rose network stack did not correctly handle certain fields. If a system was running with Rose enabled, a remote attacker could send specially crafted traffic to gain root privileges. (CVE-2011-1493) Dan Rosenberg discovered that MPT devices did not correctly validate certain values in ioctl calls. If these drivers were loaded, a local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2011-1494, CVE-2011-1495) Timo Warns discovered that the GUID partition parsing routines did not correctly validate certain structures. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1577) Tavis Ormandy discovered that the pidmap function did not correctly handle large requests. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1593) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598, CVE-2011-1748) Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl values. A local attacker with access to the video subsystem could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-1745, CVE-2011-2022) Vasiliy Kulikov discovered that the AGP driver did not check the size of certain memory allocations. A local attacker with access to the video subsystem could exploit this to run the system out of memory, leading to a denial of service. (CVE-2011-1746) Dan Rosenberg discovered that the DCCP stack did not correctly handle certain packet structures. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1770) Vasiliy Kulikov and Dan Rosenberg discovered that ecryptfs did not correctly check the origin of mount points. A local attacker could exploit this to trick the system into unmounting arbitrary mount points, leading to a denial of service. (CVE-2011-1833) Vasiliy Kulikov discovered that taskstats listeners were not correctly handled. A local attacker could expoit this to exhaust memory and CPU resources, leading to a denial of service. (CVE-2011-2484) It was discovered that Bluetooth l2cap and rfcomm did not correctly initialize structures. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy. (CVE-2011-2492) Fernando Gont discovered that the IPv6 stack used predictable fragment identification numbers. A remote attacker could exploit this to exhaust network resources, leading to a denial of service. (CVE-2011-2699) The performance counter subsystem did not correctly handle certain counters. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2918)
    last seen2020-06-01
    modified2020-06-02
    plugin id56190
    published2011-09-14
    reporterUbuntu Security Notice (C) 2011 Canonical, Inc. / NASL script (C) 2011-2016 Tenable Network Security, Inc.
    sourcehttps://www.tenable.com/plugins/nessus/56190
    titleUSN-1202-1 : linux-ti-omap4 vulnerabilities
  • NASL familySuSE Local Security Checks
    NASL idSUSE_11_4_KERNEL-120104.NASL
    descriptionThe openSUSE 11.4 kernel was updated to fix bugs and security issues. Following security issues have been fixed: CVE-2011-4604: If root does read() on a specific socket, it
    last seen2020-06-05
    modified2014-06-13
    plugin id75882
    published2014-06-13
    reporterThis script is Copyright (C) 2014-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/75882
    titleopenSUSE Security Update : kernel (openSUSE-SU-2012:0236-1)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1204-1.NASL
    descriptionDan Rosenberg discovered that the Linux kernel TIPC implementation contained multiple integer signedness errors. A local attacker could exploit this to gain root privileges. (CVE-2010-3859) Dan Rosenberg discovered that multiple terminal ioctls did not correctly initialize structure memory. A local attacker could exploit this to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4075, CVE-2010-4076, CVE-2010-4077) Dan Rosenberg discovered that the socket filters did not correctly initialize structure memory. A local attacker could create malicious filters to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4158) Dan Rosenberg discovered that the Linux kernel L2TP implementation contained multiple integer signedness errors. A local attacker could exploit this to to crash the kernel, or possibly gain root privileges. (CVE-2010-4160) Dan Rosenberg discovered that certain iovec operations did not calculate page counts correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4162) Dan Rosenberg discovered that the SCSI subsystem did not correctly validate iov segments. A local attacker with access to a SCSI device could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2010-4163, CVE-2010-4668) Dan Rosenberg discovered that the RDS protocol did not correctly check ioctl arguments. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4175) Alan Cox discovered that the HCI UART driver did not correctly check if a write operation was available. If the mmap_min-addr sysctl was changed from the Ubuntu default to a value of 0, a local attacker could exploit this flaw to gain root privileges. (CVE-2010-4242) Brad Spengler discovered that the kernel did not correctly account for userspace memory allocations during exec() calls. A local attacker could exploit this to consume all system memory, leading to a denial of service. (CVE-2010-4243) Alex Shi and Eric Dumazet discovered that the network stack did not correctly handle packet backlogs. A remote attacker could exploit this by sending a large amount of network traffic to cause the system to run out of memory, leading to a denial of service. (CVE-2010-4251, CVE-2010-4805) It was discovered that the ICMP stack did not correctly handle certain unreachable messages. If a remote attacker were able to acquire a socket lock, they could send specially crafted traffic that would crash the system, leading to a denial of service. (CVE-2010-4526) Dan Carpenter discovered that the Infiniband driver did not correctly handle certain requests. A local user could exploit this to crash the system or potentially gain root privileges. (CVE-2010-4649, CVE-2011-1044) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Timo Warns discovered that MAC partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system or potentially gain root privileges. (CVE-2011-1010) Timo Warns discovered that LDM partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1012) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) It was discovered that the /proc filesystem did not correctly handle permission changes when programs executed. A local attacker could hold open files to examine details about programs running with higher privileges, potentially increasing the chances of exploiting additional vulnerabilities. (CVE-2011-1020) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Nelson Elhage discovered that the epoll subsystem did not correctly handle certain structures. A local attacker could create malicious requests that would hang the system, leading to a denial of service. (CVE-2011-1082) Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090) Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Timo Warns discovered that OSF partition parsing routines did not correctly clear memory. A local attacker with physical access could plug in a specially crafted block device to read kernel memory, leading to a loss of privacy. (CVE-2011-1163) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Ryan Sweat discovered that the GRO code did not correctly validate memory. In some configurations on systems using VLANs, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1478) Dan Rosenberg discovered that the X.25 Rose network stack did not correctly handle certain fields. If a system was running with Rose enabled, a remote attacker could send specially crafted traffic to gain root privileges. (CVE-2011-1493) Timo Warns discovered that the GUID partition parsing routines did not correctly validate certain structures. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1577) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598) Dan Rosenberg discovered that the DCCP stack did not correctly handle certain packet structures. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1770) Vasiliy Kulikov and Dan Rosenberg discovered that ecryptfs did not correctly check the origin of mount points. A local attacker could exploit this to trick the system into unmounting arbitrary mount points, leading to a denial of service. (CVE-2011-1833) Vasiliy Kulikov discovered that taskstats listeners were not correctly handled. A local attacker could expoit this to exhaust memory and CPU resources, leading to a denial of service. (CVE-2011-2484) It was discovered that Bluetooth l2cap and rfcomm did not correctly initialize structures. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy. (CVE-2011-2492) Fernando Gont discovered that the IPv6 stack used predictable fragment identification numbers. A remote attacker could exploit this to exhaust network resources, leading to a denial of service. (CVE-2011-2699) The performance counter subsystem did not correctly handle certain counters. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2918)
    last seen2020-06-01
    modified2020-06-02
    plugin id56192
    published2011-09-14
    reporterUbuntu Security Notice (C) 2011 Canonical, Inc. / NASL script (C) 2011-2016 Tenable Network Security, Inc.
    sourcehttps://www.tenable.com/plugins/nessus/56192
    titleUSN-1204-1 : linux-fsl-imx51 vulnerabilities
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1212-1.NASL
    descriptionGoldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) It was discovered that the /proc filesystem did not correctly handle permission changes when programs executed. A local attacker could hold open files to examine details about programs running with higher privileges, potentially increasing the chances of exploiting additional vulnerabilities. (CVE-2011-1020) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Dan Rosenberg discovered that the X.25 Rose network stack did not correctly handle certain fields. If a system was running with Rose enabled, a remote attacker could send specially crafted traffic to gain root privileges. (CVE-2011-1493) Dan Rosenberg discovered that MPT devices did not correctly validate certain values in ioctl calls. If these drivers were loaded, a local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2011-1494, CVE-2011-1495) Timo Warns discovered that the GUID partition parsing routines did not correctly validate certain structures. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1577) Phil Oester discovered that the network bonding system did not correctly handle large queues. On some systems, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1581) Tavis Ormandy discovered that the pidmap function did not correctly handle large requests. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1593) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598, CVE-2011-1748) Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl values. A local attacker with access to the video subsystem could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-1745, CVE-2011-2022) Vasiliy Kulikov discovered that the AGP driver did not check the size of certain memory allocations. A local attacker with access to the video subsystem could exploit this to run the system out of memory, leading to a denial of service. (CVE-2011-1746) Dan Rosenberg discovered that the DCCP stack did not correctly handle certain packet structures. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1770) Ben Greear discovered that CIFS did not correctly handle direct I/O. A local attacker with access to a CIFS partition could exploit this to crash the system, leading to a denial of service. (CVE-2011-1771) Vasiliy Kulikov and Dan Rosenberg discovered that ecryptfs did not correctly check the origin of mount points. A local attacker could exploit this to trick the system into unmounting arbitrary mount points, leading to a denial of service. (CVE-2011-1833) Vasiliy Kulikov discovered that taskstats listeners were not correctly handled. A local attacker could expoit this to exhaust memory and CPU resources, leading to a denial of service. (CVE-2011-2484) It was discovered that Bluetooth l2cap and rfcomm did not correctly initialize structures. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy. (CVE-2011-2492) Sami Liedes discovered that ext4 did not correctly handle missing root inodes. A local attacker could trigger the mount of a specially crafted filesystem to cause the system to crash, leading to a denial of service. (CVE-2011-2493) It was discovered that GFS2 did not correctly check block sizes. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2689) Fernando Gont discovered that the IPv6 stack used predictable fragment identification numbers. A remote attacker could exploit this to exhaust network resources, leading to a denial of service. (CVE-2011-2699) The performance counter subsystem did not correctly handle certain counters. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2918)
    last seen2020-06-01
    modified2020-06-02
    plugin id56257
    published2011-09-22
    reporterUbuntu Security Notice (C) 2011 Canonical, Inc. / NASL script (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/56257
    titleUSN-1212-1 : linux-ti-omap4 vulnerabilities
  • NASL familySuSE Local Security Checks
    NASL idSUSE_KERNEL-7915.NASL
    descriptionThis Linux kernel update fixes various security issues and bugs in the SUSE Linux Enterprise 10 SP4 kernel. This update fixes the following security issues : - X.25 remote DoS. (CVE-2010-3873). (bnc#651219) - X.25 remote Dos. (CVE-2010-4164). (bnc#653260) - 1 socket local DoS. (CVE-2010-4249). (bnc#655696) - ebtables infoleak. (CVE-2011-1080). (bnc#676602) - netfilter: arp_tables infoleak to userspace. (CVE-2011-1170). (bnc#681180) - netfilter: ip_tables infoleak to userspace. (CVE-2011-1171). (bnc#681181) - netfilter: ip6_tables infoleak to userspace. (CVE-2011-1172). (bnc#681185) - econet 4 byte infoleak. (CVE-2011-1173). (bnc#681186) - hfs NULL pointer dereference. (CVE-2011-2203). (bnc#699709) - inet_diag infinite loop. (CVE-2011-2213). (bnc#700879) - netfilter: ipt_CLUSTERIP buffer overflow. (CVE-2011-2534). (bnc#702037) - ipv6: make fragment identifications less predictable. (CVE-2011-2699). (bnc#707288) - clock_gettime() panic. (CVE-2011-3209). (bnc#726064) - qdisc NULL dereference (CVE-2011-2525) This update also fixes the following non-security issues:. (bnc#735612) - New timesource for VMware platform. (bnc#671124) - usblp crashes after the printer is unplugged for the second time. (bnc#673343) - Data corruption with mpt2sas driver. (bnc#704253) - NIC Bond no longer works when booting the XEN kernel. (bnc#716437) -
    last seen2020-06-05
    modified2012-05-17
    plugin id59161
    published2012-05-17
    reporterThis script is Copyright (C) 2012-2020 Tenable Network Security, Inc.
    sourcehttps://www.tenable.com/plugins/nessus/59161
    titleSuSE 10 Security Update : Linux kernel (ZYPP Patch Number 7915)
  • NASL familyDebian Local Security Checks
    NASL idDEBIAN_DSA-2264.NASL
    descriptionSeveral vulnerabilities have been discovered in the Linux kernel that may lead to a privilege escalation, denial of service or information leak. The Common Vulnerabilities and Exposures project identifies the following problems : - CVE-2010-2524 David Howells reported an issue in the Common Internet File System (CIFS). Local users could cause arbitrary CIFS shares to be mounted by introducing malicious redirects. - CVE-2010-3875 Vasiliy Kulikov discovered an issue in the Linux implementation of the Amateur Radio AX.25 Level 2 protocol. Local users may obtain access to sensitive kernel memory. - CVE-2010-4075 Dan Rosenberg reported an issue in the tty layer that may allow local users to obtain access to sensitive kernel memory. - CVE-2010-4655 Kees Cook discovered several issues in the ethtool interface which may allow local users with the CAP_NET_ADMIN capability to obtain access to sensitive kernel memory. - CVE-2011-0695 Jens Kuehnel reported an issue in the InfiniBand stack. Remote attackers can exploit a race condition to cause a denial of service (kernel panic). - CVE-2011-0710 Al Viro reported an issue in the /proc/<pid>/status interface on the s390 architecture. Local users could gain access to sensitive memory in processes they do not own via the task_show_regs entry. - CVE-2011-0711 Dan Rosenberg reported an issue in the XFS filesystem. Local users may obtain access to sensitive kernel memory. - CVE-2011-0726 Kees Cook reported an issue in the /proc/<pid>/stat implementation. Local users could learn the text location of a process, defeating protections provided by address space layout randomization (ASLR). - CVE-2011-1010 Timo Warns reported an issue in the Linux support for Mac partition tables. Local users with physical access could cause a denial of service (panic) by adding a storage device with a malicious map_count value. - CVE-2011-1012 Timo Warns reported an issue in the Linux support for LDM partition tables. Local users with physical access could cause a denial of service (Oops) by adding a storage device with an invalid VBLK value in the VMDB structure. - CVE-2011-1017 Timo Warns reported an issue in the Linux support for LDM partition tables. Users with physical access can gain access to sensitive kernel memory or gain elevated privileges by adding a storage device with a specially crafted LDM partition. - CVE-2011-1078 Vasiliy Kulikov discovered an issue in the Bluetooth subsystem. Local users can obtain access to sensitive kernel memory. - CVE-2011-1079 Vasiliy Kulikov discovered an issue in the Bluetooth subsystem. Local users with the CAP_NET_ADMIN capability can cause a denial of service (kernel Oops). - CVE-2011-1080 Vasiliy Kulikov discovered an issue in the Netfilter subsystem. Local users can obtain access to sensitive kernel memory. - CVE-2011-1090 Neil Horman discovered a memory leak in the setacl() call on NFSv4 filesystems. Local users can exploit this to cause a denial of service (Oops). - CVE-2011-1093 Johan Hovold reported an issue in the Datagram Congestion Control Protocol (DCCP) implementation. Remote users could cause a denial of service by sending data after closing a socket. - CVE-2011-1160 Peter Huewe reported an issue in the Linux kernel
    last seen2020-03-17
    modified2011-06-20
    plugin id55170
    published2011-06-20
    reporterThis script is Copyright (C) 2011-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/55170
    titleDebian DSA-2264-1 : linux-2.6 - privilege escalation/denial of service/information leak
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1162-1.NASL
    descriptionBrad Spengler discovered that the kernel did not correctly account for userspace memory allocations during exec() calls. A local attacker could exploit this to consume all system memory, leading to a denial of service. (CVE-2010-4243) Alexander Duyck discovered that the Intel Gigabit Ethernet driver did not correctly handle certain configurations. If such a device was configured without VLANs, a remote attacker could crash the system, leading to a denial of service. (CVE-2010-4263) Nelson Elhage discovered that Econet did not correctly handle AUN packets over UDP. A local attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2010-4342) Dan Rosenberg discovered that IRDA did not correctly check the size of buffers. On non-x86 systems, a local attacker could exploit this to read kernel heap memory, leading to a loss of privacy. (CVE-2010-4529) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system. (CVE-2011-1019) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Timo Warns discovered that OSF partition parsing routines did not correctly clear memory. A local attacker with physical access could plug in a specially crafted block device to read kernel memory, leading to a loss of privacy. (CVE-2011-1163) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Dan Rosenberg reported errors in the OSS (Open Sound System) MIDI interface. A local attacker on non-x86 systems might be able to cause a denial of service. (CVE-2011-1476) Dan Rosenberg reported errors in the kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id55521
    published2011-07-06
    reporterUbuntu Security Notice (C) 2011-2019 Canonical, Inc. / NASL script (C) 2011-2016 Tenable Network Security, Inc.
    sourcehttps://www.tenable.com/plugins/nessus/55521
    titleUbuntu 10.04 LTS : linux-mvl-dove vulnerabilities (USN-1162-1)
  • NASL familySuSE Local Security Checks
    NASL idOPENSUSE-2012-342.NASL
    descriptionThis kernel update of the openSUSE 12.1 kernel fixes lots of bugs and security issues. Following issues were fixed : - tcp: drop SYN+FIN messages (bnc#765102). - net: sock: validate data_len before allocating skb in sock_alloc_send_pskb() (bnc#765320, CVE-2012-2136). - fcaps: clear the same personality flags as suid when fcaps are used (bnc#758260 CVE-2012-2123). - macvtap: zerocopy: validate vectors before building skb (bnc#758243 CVE-2012-2119). - hfsplus: Fix potential buffer overflows (bnc#760902 CVE-2009-4020). - xfrm: take net hdr len into account for esp payload size calculation (bnc#759545). - ext4: fix undefined behavior in ext4_fill_flex_info() (bnc#757278). - igb: fix rtnl race in PM resume path (bnc#748859). - ixgbe: add missing rtnl_lock in PM resume path (bnc#748859). - b43: allocate receive buffers big enough for max frame len + offset (bnc#717749). - xenbus: Reject replies with payload > XENSTORE_PAYLOAD_MAX. - xenbus_dev: add missing error checks to watch handling. - hwmon: (coretemp-xen) Fix TjMax detection for older CPUs. - hwmon: (coretemp-xen) Relax target temperature range check. - Refresh other Xen patches. - tlan: add cast needed for proper 64 bit operation (bnc#756840). - dl2k: Tighten ioctl permissions (bnc#758813). - [media] cx22702: Fix signal strength. - fs: cachefiles: Add support for large files in filesystem caching (bnc#747038). - bridge: correct IPv6 checksum after pull (bnc#738644). - bridge: fix a possible use after free (bnc#738644). - bridge: Pseudo-header required for the checksum of ICMPv6 (bnc#738644). - bridge: mcast snooping, fix length check of snooped MLDv1/2 (bnc#738644). - PCI/ACPI: Report ASPM support to BIOS if not disabled from command line (bnc#714455). - ipc/sem.c: fix race with concurrent semtimedop() timeouts and IPC_RMID (bnc#756203). - drm/i915/crt: Remove 0xa0 probe for VGA. - tty_audit: fix tty_audit_add_data live lock on audit disabled (bnc#721366). - drm/i915: suspend fbdev device around suspend/hibernate (bnc#732908). - dlm: Do not allocate a fd for peeloff (bnc#729247). - sctp: Export sctp_do_peeloff (bnc#729247). - i2c-algo-bit: Fix spurious SCL timeouts under heavy load. - patches.fixes/epoll-dont-limit-non-nested.patch: Don
    last seen2020-06-05
    modified2014-06-13
    plugin id74658
    published2014-06-13
    reporterThis script is Copyright (C) 2014-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/74658
    titleopenSUSE Security Update : Kernel (openSUSE-SU-2012:0799-1)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1160-1.NASL
    descriptionDan Rosenberg discovered that IRDA did not correctly check the size of buffers. On non-x86 systems, a local attacker could exploit this to read kernel heap memory, leading to a loss of privacy. (CVE-2010-4529) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Kees Cook discovered that the IOWarrior USB device driver did not correctly check certain size fields. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2010-4656) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Dan Carpenter discovered that the TTPCI DVB driver did not check certain values during an ioctl. If the dvb-ttpci module was loaded, a local attacker could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-0521) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Rafael Dominguez Vega discovered that the caiaq Native Instruments USB driver did not correctly validate string lengths. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2011-0712) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Timo Warns discovered that MAC partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system or potentially gain root privileges. (CVE-2011-1010) Timo Warns discovered that LDM partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1012) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system. (CVE-2011-1019) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Nelson Elhage discovered that the epoll subsystem did not correctly handle certain structures. A local attacker could create malicious requests that would hang the system, leading to a denial of service. (CVE-2011-1082) Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Dan Rosenberg discovered that some ALSA drivers did not correctly check the adapter index during ioctl calls. If this driver was loaded, a local attacker could make a specially crafted ioctl call to gain root privileges. (CVE-2011-1169) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Dan Rosenberg reported errors in the OSS (Open Sound System) MIDI interface. A local attacker on non-x86 systems might be able to cause a denial of service. (CVE-2011-1476) Dan Rosenberg reported errors in the kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id55454
    published2011-06-29
    reporterUbuntu Security Notice (C) 2011-2019 Canonical, Inc. / NASL script (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/55454
    titleUbuntu 10.10 : linux vulnerabilities (USN-1160-1)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1159-1.NASL
    descriptionBrad Spengler discovered that the kernel did not correctly account for userspace memory allocations during exec() calls. A local attacker could exploit this to consume all system memory, leading to a denial of service. (CVE-2010-4243) Alexander Duyck discovered that the Intel Gigabit Ethernet driver did not correctly handle certain configurations. If such a device was configured without VLANs, a remote attacker could crash the system, leading to a denial of service. (CVE-2010-4263) Nelson Elhage discovered that Econet did not correctly handle AUN packets over UDP. A local attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2010-4342) Dan Rosenberg discovered that IRDA did not correctly check the size of buffers. On non-x86 systems, a local attacker could exploit this to read kernel heap memory, leading to a loss of privacy. (CVE-2010-4529) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system. (CVE-2011-1019) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Timo Warns discovered that OSF partition parsing routines did not correctly clear memory. A local attacker with physical access could plug in a specially crafted block device to read kernel memory, leading to a loss of privacy. (CVE-2011-1163) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Dan Rosenberg reported errors in the OSS (Open Sound System) MIDI interface. A local attacker on non-x86 systems might be able to cause a denial of service. (CVE-2011-1476) Dan Rosenberg reported errors in the kernel
    last seen2020-06-01
    modified2020-06-02
    plugin id55589
    published2011-07-14
    reporterUbuntu Security Notice (C) 2011-2013 Canonical, Inc. / NASL script (C) 2011-2016 Tenable Network Security, Inc.
    sourcehttps://www.tenable.com/plugins/nessus/55589
    titleUbuntu 10.10 : linux-mvl-dove vulnerabilities (USN-1159-1)
  • NASL familyDebian Local Security Checks
    NASL idDEBIAN_DSA-2240.NASL
    descriptionSeveral vulnerabilities have been discovered in the Linux kernel that may lead to a denial of service or privilege escalation. The Common Vulnerabilities and Exposures project identifies the following problems : - CVE-2010-3875 Vasiliy Kulikov discovered an issue in the Linux implementation of the Amateur Radio AX.25 Level 2 protocol. Local users may obtain access to sensitive kernel memory. - CVE-2011-0695 Jens Kuehnel reported an issue in the InfiniBand stack. Remote attackers can exploit a race condition to cause a denial of service (kernel panic). - CVE-2011-0711 Dan Rosenberg reported an issue in the XFS filesystem. Local users may obtain access to sensitive kernel memory. - CVE-2011-0726 Kees Cook reported an issue in the /proc/pid/stat implementation. Local users could learn the text location of a process, defeating protections provided by address space layout randomization (ASLR). - CVE-2011-1016 Marek Olsak discovered an issue in the driver for ATI/AMD Radeon video chips. Local users could pass arbitrary values to video memory and the graphics translation table, resulting in denial of service or escalated privileges. On default Debian installations, this is exploitable only by members of the
    last seen2020-03-17
    modified2011-06-10
    plugin id55028
    published2011-06-10
    reporterThis script is Copyright (C) 2011-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/55028
    titleDebian DSA-2240-1 : linux-2.6 - privilege escalation/denial of service/information leak

Packetstorm

data sourcehttps://packetstormsecurity.com/files/download/105078/USN-1202-1.txt
idPACKETSTORM:105078
last seen2016-12-05
published2011-09-14
reporterUbuntu
sourcehttps://packetstormsecurity.com/files/105078/Ubuntu-Security-Notice-USN-1202-1.html
titleUbuntu Security Notice USN-1202-1

Seebug

bulletinFamilyexploit
descriptionBugtraq ID: 47990 CVE ID:CVE-2011-1173 Linux是一款开源的操作系统。 Linux Acorn Econet协议实现存在安全漏洞,本地用户可以利用漏洞访问内核敏感内存信息。 Linux kernel 2.6.x 厂商解决方案 用户可升级到最新内核修补此漏洞: http://www.kernel.org/
idSSV:20588
last seen2017-11-19
modified2011-05-26
published2011-05-26
reporterRoot
titleLinux Kernel Acorn Econet协议实现本地信息泄露漏洞