Vulnerabilities > CVE-2010-0435 - Unspecified vulnerability in Redhat Enterprise Virtualization and KVM

047910
CVSS 0.0 - NONE
Attack vector
UNKNOWN
Attack complexity
UNKNOWN
Privileges required
UNKNOWN
Confidentiality impact
UNKNOWN
Integrity impact
UNKNOWN
Availability impact
UNKNOWN
redhat
nessus

Summary

The Hypervisor (aka rhev-hypervisor) in Red Hat Enterprise Virtualization (RHEV) 2.2, and KVM 83, when the Intel VT-x extension is enabled, allows guest OS users to cause a denial of service (NULL pointer dereference and host OS crash) via vectors related to instruction emulation.

Vulnerable Configurations

Part Description Count
Application
Redhat
2

Nessus

  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1054-1.NASL
    descriptionGleb Napatov discovered that KVM did not correctly check certain privileged operations. A local attacker with access to a guest kernel could exploit this to crash the host system, leading to a denial of service. (CVE-2010-0435) Dan Rosenberg discovered that the Linux kernel TIPC implementation contained multiple integer signedness errors. A local attacker could exploit this to gain root privileges. (CVE-2010-3859) Dan Rosenberg discovered that the Linux kernel X.25 implementation incorrectly parsed facilities. A remote attacker could exploit this to crash the kernel, leading to a denial of service. (CVE-2010-3873) Dan Rosenberg discovered that the CAN protocol on 64bit systems did not correctly calculate the size of certain buffers. A local attacker could exploit this to crash the system or possibly execute arbitrary code as the root user. (CVE-2010-3874) Vasiliy Kulikov discovered that kvm did not correctly clear memory. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy. (CVE-2010-3881) Dan Rosenberg discovered that IPC structures were not correctly initialized on 64bit systems. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4073) Dan Rosenberg discovered that the ivtv V4L driver did not correctly initialize certian structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4079) Dan Rosenberg discovered that the semctl syscall did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4083) Dan Rosenberg discovered that the socket filters did not correctly initialize structure memory. A local attacker could create malicious filters to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4158) Dan Rosenberg discovered that the Linux kernel L2TP implementation contained multiple integer signedness errors. A local attacker could exploit this to to crash the kernel, or possibly gain root privileges. (CVE-2010-4160) Dan Rosenberg discovered that certain iovec operations did not calculate page counts correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4162) Dan Rosenberg discovered multiple flaws in the X.25 facilities parsing. If a system was using X.25, a remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4164) Steve Chen discovered that setsockopt did not correctly check MSS values. A local attacker could make a specially crafted socket call to crash the system, leading to a denial of service. (CVE-2010-4165) Dave Jones discovered that the mprotect system call did not correctly handle merged VMAs. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4169) Dan Rosenberg discovered that the RDS protocol did not correctly check ioctl arguments. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4175) Brad Spengler discovered that the kernel did not correctly account for userspace memory allocations during exec() calls. A local attacker could exploit this to consume all system memory, leading to a denial of service. (CVE-2010-4243) Vegard Nossum discovered that memory garbage collection was not handled correctly for active sockets. A local attacker could exploit this to allocate all available kernel memory, leading to a denial of service. (CVE-2010-4249) It was discovered that named pipes did not correctly handle certain fcntl calls. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4256) Nelson Elhage discovered that the kernel did not correctly handle process cleanup after triggering a recoverable kernel bug. If a local attacker were able to trigger certain kinds of kernel bugs, they could create a specially crafted process to gain root privileges. (CVE-2010-4258). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen2020-06-01
    modified2020-06-02
    plugin id51847
    published2011-02-02
    reporterUbuntu Security Notice (C) 2011-2019 Canonical, Inc. / NASL script (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/51847
    titleUbuntu 10.04 LTS / 10.10 : linux, linux-ec2 vulnerabilities (USN-1054-1)
    code
    #
    # (C) Tenable Network Security, Inc.
    #
    # The descriptive text and package checks in this plugin were
    # extracted from Ubuntu Security Notice USN-1054-1. The text 
    # itself is copyright (C) Canonical, Inc. See 
    # <http://www.ubuntu.com/usn/>. Ubuntu(R) is a registered 
    # trademark of Canonical, Inc.
    #
    
    include("compat.inc");
    
    if (description)
    {
      script_id(51847);
      script_version("1.11");
      script_cvs_date("Date: 2019/09/19 12:54:26");
    
      script_cve_id("CVE-2010-0435", "CVE-2010-3859", "CVE-2010-3873", "CVE-2010-3874", "CVE-2010-3881", "CVE-2010-4073", "CVE-2010-4079", "CVE-2010-4083", "CVE-2010-4158", "CVE-2010-4160", "CVE-2010-4162", "CVE-2010-4164", "CVE-2010-4165", "CVE-2010-4169", "CVE-2010-4175", "CVE-2010-4243", "CVE-2010-4249", "CVE-2010-4256", "CVE-2010-4258");
      script_xref(name:"USN", value:"1054-1");
    
      script_name(english:"Ubuntu 10.04 LTS / 10.10 : linux, linux-ec2 vulnerabilities (USN-1054-1)");
      script_summary(english:"Checks dpkg output for updated packages.");
    
      script_set_attribute(
        attribute:"synopsis", 
        value:
    "The remote Ubuntu host is missing one or more security-related
    patches."
      );
      script_set_attribute(
        attribute:"description", 
        value:
    "Gleb Napatov discovered that KVM did not correctly check certain
    privileged operations. A local attacker with access to a guest kernel
    could exploit this to crash the host system, leading to a denial of
    service. (CVE-2010-0435)
    
    Dan Rosenberg discovered that the Linux kernel TIPC implementation
    contained multiple integer signedness errors. A local attacker could
    exploit this to gain root privileges. (CVE-2010-3859)
    
    Dan Rosenberg discovered that the Linux kernel X.25 implementation
    incorrectly parsed facilities. A remote attacker could exploit this to
    crash the kernel, leading to a denial of service. (CVE-2010-3873)
    
    Dan Rosenberg discovered that the CAN protocol on 64bit systems did
    not correctly calculate the size of certain buffers. A local attacker
    could exploit this to crash the system or possibly execute arbitrary
    code as the root user. (CVE-2010-3874)
    
    Vasiliy Kulikov discovered that kvm did not correctly clear memory. A
    local attacker could exploit this to read portions of the kernel
    stack, leading to a loss of privacy. (CVE-2010-3881)
    
    Dan Rosenberg discovered that IPC structures were not correctly
    initialized on 64bit systems. A local attacker could exploit this to
    read kernel stack memory, leading to a loss of privacy.
    (CVE-2010-4073)
    
    Dan Rosenberg discovered that the ivtv V4L driver did not correctly
    initialize certian structures. A local attacker could exploit this to
    read kernel stack memory, leading to a loss of privacy.
    (CVE-2010-4079)
    
    Dan Rosenberg discovered that the semctl syscall did not correctly
    clear kernel memory. A local attacker could exploit this to read
    kernel stack memory, leading to a loss of privacy. (CVE-2010-4083)
    
    Dan Rosenberg discovered that the socket filters did not correctly
    initialize structure memory. A local attacker could create malicious
    filters to read portions of kernel stack memory, leading to a loss of
    privacy. (CVE-2010-4158)
    
    Dan Rosenberg discovered that the Linux kernel L2TP implementation
    contained multiple integer signedness errors. A local attacker could
    exploit this to to crash the kernel, or possibly gain root privileges.
    (CVE-2010-4160)
    
    Dan Rosenberg discovered that certain iovec operations did not
    calculate page counts correctly. A local attacker could exploit this
    to crash the system, leading to a denial of service. (CVE-2010-4162)
    
    Dan Rosenberg discovered multiple flaws in the X.25 facilities
    parsing. If a system was using X.25, a remote attacker could exploit
    this to crash the system, leading to a denial of service.
    (CVE-2010-4164)
    
    Steve Chen discovered that setsockopt did not correctly check MSS
    values. A local attacker could make a specially crafted socket call to
    crash the system, leading to a denial of service. (CVE-2010-4165)
    
    Dave Jones discovered that the mprotect system call did not correctly
    handle merged VMAs. A local attacker could exploit this to crash the
    system, leading to a denial of service. (CVE-2010-4169)
    
    Dan Rosenberg discovered that the RDS protocol did not correctly check
    ioctl arguments. A local attacker could exploit this to crash the
    system, leading to a denial of service. (CVE-2010-4175)
    
    Brad Spengler discovered that the kernel did not correctly account for
    userspace memory allocations during exec() calls. A local attacker
    could exploit this to consume all system memory, leading to a denial
    of service. (CVE-2010-4243)
    
    Vegard Nossum discovered that memory garbage collection was not
    handled correctly for active sockets. A local attacker could exploit
    this to allocate all available kernel memory, leading to a denial of
    service. (CVE-2010-4249)
    
    It was discovered that named pipes did not correctly handle certain
    fcntl calls. A local attacker could exploit this to crash the system,
    leading to a denial of service. (CVE-2010-4256)
    
    Nelson Elhage discovered that the kernel did not correctly handle
    process cleanup after triggering a recoverable kernel bug. If a local
    attacker were able to trigger certain kinds of kernel bugs, they could
    create a specially crafted process to gain root privileges.
    (CVE-2010-4258).
    
    Note that Tenable Network Security has extracted the preceding
    description block directly from the Ubuntu security advisory. Tenable
    has attempted to automatically clean and format it as much as possible
    without introducing additional issues."
      );
      script_set_attribute(
        attribute:"see_also",
        value:"https://usn.ubuntu.com/1054-1/"
      );
      script_set_attribute(attribute:"solution", value:"Update the affected packages.");
      script_set_cvss_base_vector("CVSS2#AV:N/AC:L/Au:N/C:N/I:N/A:C");
      script_set_attribute(attribute:"exploitability_ease", value:"Exploits are available");
      script_set_attribute(attribute:"exploit_available", value:"true");
      script_set_attribute(attribute:"exploit_framework_core", value:"true");
      script_set_attribute(attribute:"exploited_by_malware", value:"true");
    
      script_set_attribute(attribute:"plugin_type", value:"local");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-doc");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-ec2-doc");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-ec2-source-2.6.32");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-headers-2.6");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-headers-2.6-386");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-headers-2.6-ec2");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-headers-2.6-generic");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-headers-2.6-generic-pae");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-headers-2.6-preempt");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-headers-2.6-server");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-headers-2.6-virtual");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-386");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-ec2");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-generic");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-generic-pae");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-lpia");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-preempt");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-server");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-versatile");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-image-2.6-virtual");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-libc-dev");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-source-2.6.32");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-source-2.6.35");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-tools-2.6");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:canonical:ubuntu_linux:linux-tools-common");
      script_set_attribute(attribute:"cpe", value:"cpe:/o:canonical:ubuntu_linux:10.04:-:lts");
      script_set_attribute(attribute:"cpe", value:"cpe:/o:canonical:ubuntu_linux:10.10");
    
      script_set_attribute(attribute:"vuln_publication_date", value:"2010/08/24");
      script_set_attribute(attribute:"patch_publication_date", value:"2011/02/01");
      script_set_attribute(attribute:"plugin_publication_date", value:"2011/02/02");
      script_set_attribute(attribute:"generated_plugin", value:"current");
      script_end_attributes();
    
      script_category(ACT_GATHER_INFO);
      script_copyright(english:"Ubuntu Security Notice (C) 2011-2019 Canonical, Inc. / NASL script (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.");
      script_family(english:"Ubuntu Local Security Checks");
    
      script_dependencies("ssh_get_info.nasl", "linux_alt_patch_detect.nasl");
      script_require_keys("Host/cpu", "Host/Ubuntu", "Host/Ubuntu/release", "Host/Debian/dpkg-l");
    
      exit(0);
    }
    
    
    include("audit.inc");
    include("ubuntu.inc");
    include("ksplice.inc");
    
    if ( ! get_kb_item("Host/local_checks_enabled") ) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED);
    release = get_kb_item("Host/Ubuntu/release");
    if ( isnull(release) ) audit(AUDIT_OS_NOT, "Ubuntu");
    release = chomp(release);
    if (! preg(pattern:"^(10\.04|10\.10)$", string:release)) audit(AUDIT_OS_NOT, "Ubuntu 10.04 / 10.10", "Ubuntu " + release);
    if ( ! get_kb_item("Host/Debian/dpkg-l") ) audit(AUDIT_PACKAGE_LIST_MISSING);
    
    cpu = get_kb_item("Host/cpu");
    if (isnull(cpu)) audit(AUDIT_UNKNOWN_ARCH);
    if ("x86_64" >!< cpu && cpu !~ "^i[3-6]86$") audit(AUDIT_LOCAL_CHECKS_NOT_IMPLEMENTED, "Ubuntu", cpu);
    
    if (get_one_kb_item("Host/ksplice/kernel-cves"))
    {
      rm_kb_item(name:"Host/uptrack-uname-r");
      cve_list = make_list("CVE-2010-0435", "CVE-2010-3859", "CVE-2010-3873", "CVE-2010-3874", "CVE-2010-3881", "CVE-2010-4073", "CVE-2010-4079", "CVE-2010-4083", "CVE-2010-4158", "CVE-2010-4160", "CVE-2010-4162", "CVE-2010-4164", "CVE-2010-4165", "CVE-2010-4169", "CVE-2010-4175", "CVE-2010-4243", "CVE-2010-4249", "CVE-2010-4256", "CVE-2010-4258");
      if (ksplice_cves_check(cve_list))
      {
        audit(AUDIT_PATCH_INSTALLED, "KSplice hotfix for USN-1054-1");
      }
      else
      {
        _ubuntu_report = ksplice_reporting_text();
      }
    }
    
    flag = 0;
    
    if (ubuntu_check(osver:"10.04", pkgname:"linux-doc", pkgver:"2.6.32-28.55")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-ec2-doc", pkgver:"2.6.32-312.24")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-ec2-source-2.6.32", pkgver:"2.6.32-312.24")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-headers-2.6.32-28", pkgver:"2.6.32-28.55")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-headers-2.6.32-28-386", pkgver:"2.6.32-28.55")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-headers-2.6.32-28-generic", pkgver:"2.6.32-28.55")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-headers-2.6.32-28-generic-pae", pkgver:"2.6.32-28.55")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-headers-2.6.32-28-preempt", pkgver:"2.6.32-28.55")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-headers-2.6.32-28-server", pkgver:"2.6.32-28.55")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-headers-2.6.32-312", pkgver:"2.6.32-312.24")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-headers-2.6.32-312-ec2", pkgver:"2.6.32-312.24")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-28-386", pkgver:"2.6.32-28.55")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-28-generic", pkgver:"2.6.32-28.55")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-28-generic-pae", pkgver:"2.6.32-28.55")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-28-lpia", pkgver:"2.6.32-28.55")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-28-preempt", pkgver:"2.6.32-28.55")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-28-server", pkgver:"2.6.32-28.55")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-28-versatile", pkgver:"2.6.32-28.55")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-28-virtual", pkgver:"2.6.32-28.55")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.32-312-ec2", pkgver:"2.6.32-312.24")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-libc-dev", pkgver:"2.6.32-28.55")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-source-2.6.32", pkgver:"2.6.32-28.55")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-tools-2.6.32-28", pkgver:"2.6.32-28.55")) flag++;
    if (ubuntu_check(osver:"10.04", pkgname:"linux-tools-common", pkgver:"2.6.32-28.55")) flag++;
    if (ubuntu_check(osver:"10.10", pkgname:"linux-doc", pkgver:"2.6.35-25.44")) flag++;
    if (ubuntu_check(osver:"10.10", pkgname:"linux-headers-2.6.35-25", pkgver:"2.6.35-25.44")) flag++;
    if (ubuntu_check(osver:"10.10", pkgname:"linux-headers-2.6.35-25-generic", pkgver:"2.6.35-25.44")) flag++;
    if (ubuntu_check(osver:"10.10", pkgname:"linux-headers-2.6.35-25-generic-pae", pkgver:"2.6.35-25.44")) flag++;
    if (ubuntu_check(osver:"10.10", pkgname:"linux-headers-2.6.35-25-server", pkgver:"2.6.35-25.44")) flag++;
    if (ubuntu_check(osver:"10.10", pkgname:"linux-headers-2.6.35-25-virtual", pkgver:"2.6.35-25.44")) flag++;
    if (ubuntu_check(osver:"10.10", pkgname:"linux-image-2.6.35-25-generic", pkgver:"2.6.35-25.44")) flag++;
    if (ubuntu_check(osver:"10.10", pkgname:"linux-image-2.6.35-25-generic-pae", pkgver:"2.6.35-25.44")) flag++;
    if (ubuntu_check(osver:"10.10", pkgname:"linux-image-2.6.35-25-server", pkgver:"2.6.35-25.44")) flag++;
    if (ubuntu_check(osver:"10.10", pkgname:"linux-image-2.6.35-25-versatile", pkgver:"2.6.35-25.44")) flag++;
    if (ubuntu_check(osver:"10.10", pkgname:"linux-image-2.6.35-25-virtual", pkgver:"2.6.35-25.44")) flag++;
    if (ubuntu_check(osver:"10.10", pkgname:"linux-libc-dev", pkgver:"2.6.35-1025.44")) flag++;
    if (ubuntu_check(osver:"10.10", pkgname:"linux-source-2.6.35", pkgver:"2.6.35-25.44")) flag++;
    if (ubuntu_check(osver:"10.10", pkgname:"linux-tools-2.6.35-25", pkgver:"2.6.35-25.44")) flag++;
    if (ubuntu_check(osver:"10.10", pkgname:"linux-tools-common", pkgver:"2.6.35-25.44")) flag++;
    
    if (flag)
    {
      security_report_v4(
        port       : 0,
        severity   : SECURITY_HOLE,
        extra      : ubuntu_report_get()
      );
      exit(0);
    }
    else
    {
      tested = ubuntu_pkg_tests_get();
      if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested);
      else audit(AUDIT_PACKAGE_NOT_INSTALLED, "linux-doc / linux-ec2-doc / linux-ec2-source-2.6.32 / etc");
    }
    
  • NASL familyCentOS Local Security Checks
    NASL idCENTOS_RHSA-2010-0627.NASL
    descriptionUpdated kvm packages that fix three security issues and multiple bugs are now available for Red Hat Enterprise Linux 5. The Red Hat Security Response Team has rated this update as having important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. KVM (Kernel-based Virtual Machine) is a full virtualization solution for Linux on AMD64 and Intel 64 systems. KVM is a Linux kernel module built for the standard Red Hat Enterprise Linux kernel. It was found that QEMU-KVM on the host did not validate all pointers provided from a guest system
    last seen2020-06-01
    modified2020-06-02
    plugin id48910
    published2010-08-29
    reporterThis script is Copyright (C) 2010-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/48910
    titleCentOS 5 : kvm (CESA-2010:0627)
    code
    #%NASL_MIN_LEVEL 80502
    #
    # (C) Tenable Network Security, Inc.
    #
    # The descriptive text and package checks in this plugin were  
    # extracted from Red Hat Security Advisory RHSA-2010:0627 and 
    # CentOS Errata and Security Advisory 2010:0627 respectively.
    #
    
    include("compat.inc");
    
    if (description)
    {
      script_id(48910);
      script_version("1.11");
      script_cvs_date("Date: 2019/10/25 13:36:05");
    
      script_cve_id("CVE-2010-0431", "CVE-2010-0435", "CVE-2010-2784");
      script_xref(name:"RHSA", value:"2010:0627");
    
      script_name(english:"CentOS 5 : kvm (CESA-2010:0627)");
      script_summary(english:"Checks rpm output for the updated packages");
    
      script_set_attribute(
        attribute:"synopsis", 
        value:"The remote CentOS host is missing one or more security updates."
      );
      script_set_attribute(
        attribute:"description", 
        value:
    "Updated kvm packages that fix three security issues and multiple bugs
    are now available for Red Hat Enterprise Linux 5.
    
    The Red Hat Security Response Team has rated this update as having
    important security impact. Common Vulnerability Scoring System (CVSS)
    base scores, which give detailed severity ratings, are available for
    each vulnerability from the CVE links in the References section.
    
    KVM (Kernel-based Virtual Machine) is a full virtualization solution
    for Linux on AMD64 and Intel 64 systems. KVM is a Linux kernel module
    built for the standard Red Hat Enterprise Linux kernel.
    
    It was found that QEMU-KVM on the host did not validate all pointers
    provided from a guest system's QXL graphics card driver. A privileged
    guest user could use this flaw to cause the host to dereference an
    invalid pointer, causing the guest to crash (denial of service) or,
    possibly, resulting in the privileged guest user escalating their
    privileges on the host. (CVE-2010-0431)
    
    A flaw was found in QEMU-KVM, allowing the guest some control over the
    index used to access the callback array during sub-page MMIO
    initialization. A privileged guest user could use this flaw to crash
    the guest (denial of service) or, possibly, escalate their privileges
    on the host. (CVE-2010-2784)
    
    A NULL pointer dereference flaw was found when the host system had a
    processor with the Intel VT-x extension enabled. A privileged guest
    user could use this flaw to trick the host into emulating a certain
    instruction, which could crash the host (denial of service).
    (CVE-2010-0435)
    
    This update also fixes the following bugs :
    
    * running a 'qemu-img' check on a faulty virtual machine image ended
    with a segmentation fault. With this update, the segmentation fault no
    longer occurs when running the 'qemu-img' check. (BZ#610342)
    
    * when attempting to transfer a file between two guests that were
    joined in the same virtual LAN (VLAN), the receiving guest
    unexpectedly quit. With this update, the transfer completes
    successfully. (BZ#610343)
    
    * installation of a system was occasionally failing in KVM. This was
    caused by KVM using wrong permissions for large guest pages. With this
    update, the installation completes successfully. (BZ#616796)
    
    * previously, the migration process would fail for a virtual machine
    because the virtual machine could not map all the memory. This was
    caused by a conflict that was initiated when a virtual machine was
    initially run and then migrated right away. With this update, the
    conflict no longer occurs and the migration process no longer fails.
    (BZ#618205)
    
    * using a thinly provisioned VirtIO disk on iSCSI storage and
    performing a 'qemu-img' check during an 'e_no_space' event returned
    cluster errors. With this update, the errors no longer appear.
    (BZ#618206)
    
    All KVM users should upgrade to these updated packages, which contain
    backported patches to resolve these issues. Note: The procedure in the
    Solution section must be performed before this update will take
    effect."
      );
      # https://lists.centos.org/pipermail/centos-announce/2010-August/016954.html
      script_set_attribute(
        attribute:"see_also",
        value:"http://www.nessus.org/u?05fbda20"
      );
      script_set_attribute(attribute:"solution", value:"Update the affected kvm packages.");
      script_set_cvss_base_vector("CVSS2#AV:L/AC:M/Au:S/C:C/I:C/A:C");
    
      script_set_attribute(attribute:"plugin_type", value:"local");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:centos:centos:kmod-kvm");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:centos:centos:kvm");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:centos:centos:kvm-qemu-img");
      script_set_attribute(attribute:"cpe", value:"p-cpe:/a:centos:centos:kvm-tools");
      script_set_attribute(attribute:"cpe", value:"cpe:/o:centos:centos:5");
    
      script_set_attribute(attribute:"vuln_publication_date", value:"2010/08/24");
      script_set_attribute(attribute:"patch_publication_date", value:"2010/08/27");
      script_set_attribute(attribute:"plugin_publication_date", value:"2010/08/29");
      script_set_attribute(attribute:"generated_plugin", value:"current");
      script_end_attributes();
    
      script_category(ACT_GATHER_INFO);
      script_copyright(english:"This script is Copyright (C) 2010-2019 and is owned by Tenable, Inc. or an Affiliate thereof.");
      script_family(english:"CentOS Local Security Checks");
    
      script_dependencies("ssh_get_info.nasl");
      script_require_keys("Host/local_checks_enabled", "Host/CentOS/release", "Host/CentOS/rpm-list");
    
      exit(0);
    }
    
    
    include("audit.inc");
    include("global_settings.inc");
    include("rpm.inc");
    
    
    if (!get_kb_item("Host/local_checks_enabled")) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED);
    release = get_kb_item("Host/CentOS/release");
    if (isnull(release) || "CentOS" >!< release) audit(AUDIT_OS_NOT, "CentOS");
    os_ver = pregmatch(pattern: "CentOS(?: Linux)? release ([0-9]+)", string:release);
    if (isnull(os_ver)) audit(AUDIT_UNKNOWN_APP_VER, "CentOS");
    os_ver = os_ver[1];
    if (! preg(pattern:"^5([^0-9]|$)", string:os_ver)) audit(AUDIT_OS_NOT, "CentOS 5.x", "CentOS " + os_ver);
    
    if (!get_kb_item("Host/CentOS/rpm-list")) audit(AUDIT_PACKAGE_LIST_MISSING);
    
    
    cpu = get_kb_item("Host/cpu");
    if (isnull(cpu)) audit(AUDIT_UNKNOWN_ARCH);
    if ("x86_64" >!< cpu && cpu !~ "^i[3-6]86$") audit(AUDIT_LOCAL_CHECKS_NOT_IMPLEMENTED, "CentOS", cpu);
    
    
    flag = 0;
    if (rpm_check(release:"CentOS-5", cpu:"x86_64", reference:"kmod-kvm-83-164.el5_5.21")) flag++;
    if (rpm_check(release:"CentOS-5", cpu:"x86_64", reference:"kvm-83-164.el5_5.21")) flag++;
    if (rpm_check(release:"CentOS-5", cpu:"x86_64", reference:"kvm-qemu-img-83-164.el5_5.21")) flag++;
    if (rpm_check(release:"CentOS-5", cpu:"x86_64", reference:"kvm-tools-83-164.el5_5.21")) flag++;
    
    
    if (flag)
    {
      security_report_v4(
        port       : 0,
        severity   : SECURITY_WARNING,
        extra      : rpm_report_get()
      );
      exit(0);
    }
    else
    {
      tested = pkg_tests_get();
      if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested);
      else audit(AUDIT_PACKAGE_NOT_INSTALLED, "kmod-kvm / kvm / kvm-qemu-img / kvm-tools");
    }
    
  • NASL familyRed Hat Local Security Checks
    NASL idREDHAT-RHSA-2010-0622.NASL
    descriptionUpdated rhev-hypervisor packages that fix multiple security issues and two bugs are now available. The Red Hat Security Response Team has rated this update as having important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The rhev-hypervisor package provides a Red Hat Enterprise Virtualization Hypervisor ISO disk image. The Red Hat Enterprise Virtualization Hypervisor is a dedicated Kernel-based Virtual Machine (KVM) hypervisor. It includes everything necessary to run and manage virtual machines: A subset of the Red Hat Enterprise Linux operating environment and the Red Hat Enterprise Virtualization Agent. Note: Red Hat Enterprise Virtualization Hypervisor is only available for the Intel 64 and AMD64 architectures with virtualization extensions. It was found that the libspice component of QEMU-KVM on the host did not validate all pointers provided from a guest system
    last seen2020-06-01
    modified2020-06-02
    plugin id79276
    published2014-11-17
    reporterThis script is Copyright (C) 2014-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/79276
    titleRHEL 5 : rhev-hypervisor (RHSA-2010:0622)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1072-1.NASL
    descriptionGleb Napatov discovered that KVM did not correctly check certain privileged operations. A local attacker with access to a guest kernel could exploit this to crash the host system, leading to a denial of service. (CVE-2010-0435) Dave Chinner discovered that the XFS filesystem did not correctly order inode lookups when exported by NFS. A remote attacker could exploit this to read or write disk blocks that had changed file assignment or had become unlinked, leading to a loss of privacy. (CVE-2010-2943) Dan Rosenberg discovered that several network ioctls did not clear kernel memory correctly. A local user could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3296, CVE-2010-3297) Dan Jacobson discovered that ThinkPad video output was not correctly access controlled. A local attacker could exploit this to hang the system, leading to a denial of service. (CVE-2010-3448) It was discovered that KVM did not correctly initialize certain CPU registers. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-3698) It was discovered that Xen did not correctly clean up threads. A local attacker in a guest system could exploit this to exhaust host system resources, leading to a denial of serivce. (CVE-2010-3699) Brad Spengler discovered that stack memory for new a process was not correctly calculated. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-3858) Dan Rosenberg discovered that the Linux kernel TIPC implementation contained multiple integer signedness errors. A local attacker could exploit this to gain root privileges. (CVE-2010-3859) Dan Rosenberg discovered that the Linux kernel X.25 implementation incorrectly parsed facilities. A remote attacker could exploit this to crash the kernel, leading to a denial of service. (CVE-2010-3873) Vasiliy Kulikov discovered that the Linux kernel X.25 implementation did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3875) Vasiliy Kulikov discovered that the Linux kernel sockets implementation did not properly initialize certain structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3876) Vasiliy Kulikov discovered that the TIPC interface did not correctly initialize certain structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3877) Nelson Elhage discovered that the Linux kernel IPv4 implementation did not properly audit certain bytecodes in netlink messages. A local attacker could exploit this to cause the kernel to hang, leading to a denial of service. (CVE-2010-3880) Kees Cook and Vasiliy Kulikov discovered that the shm interface did not clear kernel memory correctly. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4072) Dan Rosenberg discovered that the USB subsystem did not correctly initialize certian structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4074) Dan Rosenberg discovered that the SiS video driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4078) Dan Rosenberg discovered that the ivtv V4L driver did not correctly initialize certian structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4079) Dan Rosenberg discovered that the RME Hammerfall DSP audio interface driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4080, CVE-2010-4081) Dan Rosenberg discovered that the semctl syscall did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4083) James Bottomley discovered that the ICP vortex storage array controller driver did not validate certain sizes. A local attacker on a 64bit system could exploit this to crash the kernel, leading to a denial of service. (CVE-2010-4157) Dan Rosenberg discovered that the Linux kernel L2TP implementation contained multiple integer signedness errors. A local attacker could exploit this to to crash the kernel, or possibly gain root privileges. (CVE-2010-4160) It was discovered that multithreaded exec did not handle CPU timers correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4248). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen2020-06-01
    modified2020-06-02
    plugin id52475
    published2011-03-01
    reporterUbuntu Security Notice (C) 2011-2019 Canonical, Inc. / NASL script (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/52475
    titleUbuntu 8.04 LTS : linux vulnerabilities (USN-1072-1)
  • NASL familyDebian Local Security Checks
    NASL idDEBIAN_DSA-2153.NASL
    descriptionSeveral vulnerabilities have been discovered in the Linux kernel that may lead to a privilege escalation, denial of service or information leak. The Common Vulnerabilities and Exposures project identifies the following problems : - CVE-2010-0435 Gleb Napatov reported an issue in the KVM subsystem that allows virtual machines to cause a denial of service of the host machine by executing mov to/from DR instructions. - CVE-2010-3699 Keir Fraser provided a fix for an issue in the Xen subsystem. A guest can cause a denial of service on the host by retaining a leaked reference to a device. This can result in a zombie domain, xenwatch process hangs, and xm command failures. - CVE-2010-4158 Dan Rosenberg discovered an issue in the socket filters subsystem, allowing local unprivileged users to obtain the contents of sensitive kernel memory. - CVE-2010-4162 Dan Rosenberg discovered an overflow issue in the block I/O subsystem that allows local users to map large numbers of pages, resulting in a denial of service due to invocation of the out of memory killer. - CVE-2010-4163 Dan Rosenberg discovered an issue in the block I/O subsystem. Due to improper validation of iov segments, local users can trigger a kernel panic resulting in a denial of service. - CVE-2010-4242 Alan Cox reported an issue in the Bluetooth subsystem. Local users with sufficient permission to access HCI UART devices can cause a denial of service (NULL pointer dereference) due to a missing check for an existing tty write operation. - CVE-2010-4243 Brad Spengler reported a denial-of-service issue in the kernel memory accounting system. By passing large argv/envp values to exec, local users can cause the out of memory killer to kill processes owned by other users. - CVE-2010-4248 Oleg Nesterov reported an issue in the POSIX CPU timers subsystem. Local users can cause a denial of service (Oops) due to incorrect assumptions about thread group leader behavior. - CVE-2010-4249 Vegard Nossum reported an issue with the UNIX socket garbage collector. Local users can consume all of LOWMEM and decrease system performance by overloading the system with inflight sockets. - CVE-2010-4258 Nelson Elhage reported an issue in Linux oops handling. Local users may be able to obtain elevated privileges if they are able to trigger an oops with a process
    last seen2020-03-17
    modified2011-01-31
    plugin id51818
    published2011-01-31
    reporterThis script is Copyright (C) 2011-2020 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/51818
    titleDebian DSA-2153-1 : linux-2.6 - privilege escalation/denial of service/information leak
  • NASL familyScientific Linux Local Security Checks
    NASL idSL_20100819_KVM_ON_SL5_X.NASL
    descriptionIt was found that QEMU-KVM on the host did not validate all pointers provided from a guest system
    last seen2020-06-01
    modified2020-06-02
    plugin id60837
    published2012-08-01
    reporterThis script is Copyright (C) 2012-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/60837
    titleScientific Linux Security Update : kvm on SL5.x x86_64
  • NASL familySuSE Local Security Checks
    NASL idSUSE_11_3_KERNEL-101215.NASL
    descriptionThe openSUSE 11.3 kernel was updated to fix various bugs and security issues. Following security issues have been fixed: CVE-2010-4347: A local user could inject ACPI code into the kernel via the world-writable
    last seen2020-06-01
    modified2020-06-02
    plugin id75553
    published2014-06-13
    reporterThis script is Copyright (C) 2014-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/75553
    titleopenSUSE Security Update : kernel (openSUSE-SU-2011:0004-1)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1073-1.NASL
    descriptionGleb Napatov discovered that KVM did not correctly check certain privileged operations. A local attacker with access to a guest kernel could exploit this to crash the host system, leading to a denial of service. (CVE-2010-0435) Dan Jacobson discovered that ThinkPad video output was not correctly access controlled. A local attacker could exploit this to hang the system, leading to a denial of service. (CVE-2010-3448) It was discovered that KVM did not correctly initialize certain CPU registers. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-3698) Dan Rosenberg discovered that the Linux kernel TIPC implementation contained multiple integer signedness errors. A local attacker could exploit this to gain root privileges. (CVE-2010-3859) Thomas Pollet discovered that the RDS network protocol did not check certain iovec buffers. A local attacker could exploit this to crash the system or possibly execute arbitrary code as the root user. (CVE-2010-3865) Dan Rosenberg discovered that the Linux kernel X.25 implementation incorrectly parsed facilities. A remote attacker could exploit this to crash the kernel, leading to a denial of service. (CVE-2010-3873) Dan Rosenberg discovered that the CAN protocol on 64bit systems did not correctly calculate the size of certain buffers. A local attacker could exploit this to crash the system or possibly execute arbitrary code as the root user. (CVE-2010-3874) Vasiliy Kulikov discovered that the Linux kernel X.25 implementation did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3875) Vasiliy Kulikov discovered that the Linux kernel sockets implementation did not properly initialize certain structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3876) Vasiliy Kulikov discovered that the TIPC interface did not correctly initialize certain structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3877) Nelson Elhage discovered that the Linux kernel IPv4 implementation did not properly audit certain bytecodes in netlink messages. A local attacker could exploit this to cause the kernel to hang, leading to a denial of service. (CVE-2010-3880) Dan Rosenberg discovered that IPC structures were not correctly initialized on 64bit systems. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4073) Dan Rosenberg discovered that the USB subsystem did not correctly initialize certian structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4074) Dan Rosenberg discovered that the SiS video driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4078) Dan Rosenberg discovered that the ivtv V4L driver did not correctly initialize certian structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4079) Dan Rosenberg discovered that the RME Hammerfall DSP audio interface driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4080, CVE-2010-4081) Dan Rosenberg discovered that the VIA video driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4082) Dan Rosenberg discovered that the semctl syscall did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4083) James Bottomley discovered that the ICP vortex storage array controller driver did not validate certain sizes. A local attacker on a 64bit system could exploit this to crash the kernel, leading to a denial of service. (CVE-2010-4157) Dan Rosenberg discovered that the Linux kernel L2TP implementation contained multiple integer signedness errors. A local attacker could exploit this to to crash the kernel, or possibly gain root privileges. (CVE-2010-4160) Steve Chen discovered that setsockopt did not correctly check MSS values. A local attacker could make a specially crafted socket call to crash the system, leading to a denial of service. (CVE-2010-4165) Dave Jones discovered that the mprotect system call did not correctly handle merged VMAs. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4169) It was discovered that multithreaded exec did not handle CPU timers correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4248) Vegard Nossum discovered that memory garbage collection was not handled correctly for active sockets. A local attacker could exploit this to allocate all available kernel memory, leading to a denial of service. (CVE-2010-4249). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen2020-06-01
    modified2020-06-02
    plugin id52476
    published2011-03-01
    reporterUbuntu Security Notice (C) 2011-2019 Canonical, Inc. / NASL script (C) 2011-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/52476
    titleUbuntu 9.10 : linux, linux-ec2 vulnerabilities (USN-1073-1)
  • NASL familyRed Hat Local Security Checks
    NASL idREDHAT-RHSA-2010-0627.NASL
    descriptionUpdated kvm packages that fix three security issues and multiple bugs are now available for Red Hat Enterprise Linux 5. The Red Hat Security Response Team has rated this update as having important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. KVM (Kernel-based Virtual Machine) is a full virtualization solution for Linux on AMD64 and Intel 64 systems. KVM is a Linux kernel module built for the standard Red Hat Enterprise Linux kernel. It was found that QEMU-KVM on the host did not validate all pointers provided from a guest system
    last seen2020-06-01
    modified2020-06-02
    plugin id63946
    published2013-01-24
    reporterThis script is Copyright (C) 2013-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/63946
    titleRHEL 5 : kvm (RHSA-2010:0627)
  • NASL familyOracle Linux Local Security Checks
    NASL idORACLELINUX_ELSA-2010-0627.NASL
    descriptionFrom Red Hat Security Advisory 2010:0627 : Updated kvm packages that fix three security issues and multiple bugs are now available for Red Hat Enterprise Linux 5. The Red Hat Security Response Team has rated this update as having important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. KVM (Kernel-based Virtual Machine) is a full virtualization solution for Linux on AMD64 and Intel 64 systems. KVM is a Linux kernel module built for the standard Red Hat Enterprise Linux kernel. It was found that QEMU-KVM on the host did not validate all pointers provided from a guest system
    last seen2020-06-01
    modified2020-06-02
    plugin id68085
    published2013-07-12
    reporterThis script is Copyright (C) 2013-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/68085
    titleOracle Linux 5 : kvm (ELSA-2010-0627)
  • NASL familyUbuntu Local Security Checks
    NASL idUBUNTU_USN-1083-1.NASL
    descriptionDan Rosenberg discovered that the RDS network protocol did not correctly check certain parameters. A local attacker could exploit this gain root privileges. (CVE-2010-3904) Nelson Elhage discovered several problems with the Acorn Econet protocol driver. A local user could cause a denial of service via a NULL pointer dereference, escalate privileges by overflowing the kernel stack, and assign Econet addresses to arbitrary interfaces. (CVE-2010-3848, CVE-2010-3849, CVE-2010-3850) Ben Hawkes discovered that the Linux kernel did not correctly filter registers on 64bit kernels when performing 32bit system calls. On a 64bit system, a local attacker could manipulate 32bit system calls to gain root privileges. (CVE-2010-3301) Al Viro discovered a race condition in the TTY driver. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2009-4895) Gleb Napatov discovered that KVM did not correctly check certain privileged operations. A local attacker with access to a guest kernel could exploit this to crash the host system, leading to a denial of service. (CVE-2010-0435) Dan Rosenberg discovered that the MOVE_EXT ext4 ioctl did not correctly check file permissions. A local attacker could overwrite append-only files, leading to potential data loss. (CVE-2010-2066) Dan Rosenberg discovered that the swapexit xfs ioctl did not correctly check file permissions. A local attacker could exploit this to read from write-only files, leading to a loss of privacy. (CVE-2010-2226) Suresh Jayaraman discovered that CIFS did not correctly validate certain response packats. A remote attacker could send specially crafted traffic that would crash the system, leading to a denial of service. (CVE-2010-2248) Ben Hutchings discovered that the ethtool interface did not correctly check certain sizes. A local attacker could perform malicious ioctl calls that could crash the system, leading to a denial of service. (CVE-2010-2478, CVE-2010-3084) James Chapman discovered that L2TP did not correctly evaluate checksum capabilities. If an attacker could make malicious routing changes, they could crash the system, leading to a denial of service. (CVE-2010-2495) Neil Brown discovered that NFSv4 did not correctly check certain write requests. A remote attacker could send specially crafted traffic that could crash the system or possibly gain root privileges. (CVE-2010-2521) David Howells discovered that DNS resolution in CIFS could be spoofed. A local attacker could exploit this to control DNS replies, leading to a loss of privacy and possible privilege escalation. (CVE-2010-2524) Dan Rosenberg discovered that the btrfs filesystem did not correctly validate permissions when using the clone function. A local attacker could overwrite the contents of file handles that were opened for append-only, or potentially read arbitrary contents, leading to a loss of privacy. (CVE-2010-2537, CVE-2010-2538) Bob Peterson discovered that GFS2 rename operations did not correctly validate certain sizes. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-2798) Eric Dumazet discovered that many network functions could leak kernel stack contents. A local attacker could exploit this to read portions of kernel memory, leading to a loss of privacy. (CVE-2010-2942, CVE-2010-3477) Dave Chinner discovered that the XFS filesystem did not correctly order inode lookups when exported by NFS. A remote attacker could exploit this to read or write disk blocks that had changed file assignment or had become unlinked, leading to a loss of privacy. (CVE-2010-2943) Sergey Vlasov discovered that JFS did not correctly handle certain extended attributes. A local attacker could bypass namespace access rules, leading to a loss of privacy. (CVE-2010-2946) Tavis Ormandy discovered that the IRDA subsystem did not correctly shut down. A local attacker could exploit this to cause the system to crash or possibly gain root privileges. (CVE-2010-2954) Brad Spengler discovered that the wireless extensions did not correctly validate certain request sizes. A local attacker could exploit this to read portions of kernel memory, leading to a loss of privacy. (CVE-2010-2955) Tavis Ormandy discovered that the session keyring did not correctly check for its parent. On systems without a default session keyring, a local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-2960) Kees Cook discovered that the Intel i915 graphics driver did not correctly validate memory regions. A local attacker with access to the video card could read and write arbitrary kernel memory to gain root privileges. (CVE-2010-2962) Kees Cook discovered that the V4L1 32bit compat interface did not correctly validate certain parameters. A local attacker on a 64bit system with access to a video device could exploit this to gain root privileges. (CVE-2010-2963) Toshiyuki Okajima discovered that ext4 did not correctly check certain parameters. A local attacker could exploit this to crash the system or overwrite the last block of large files. (CVE-2010-3015) Tavis Ormandy discovered that the AIO subsystem did not correctly validate certain parameters. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2010-3067) Dan Rosenberg discovered that certain XFS ioctls leaked kernel stack contents. A local attacker could exploit this to read portions of kernel memory, leading to a loss of privacy. (CVE-2010-3078) Robert Swiecki discovered that ftrace did not correctly handle mutexes. A local attacker could exploit this to crash the kernel, leading to a denial of service. (CVE-2010-3079) Tavis Ormandy discovered that the OSS sequencer device did not correctly shut down. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2010-3080) Dan Rosenberg discovered that several network ioctls did not clear kernel memory correctly. A local user could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3296, CVE-2010-3297, CVE-2010-3298) Dan Rosenberg discovered that the ROSE driver did not correctly check parameters. A local attacker with access to a ROSE network device could exploit this to crash the system or possibly gain root privileges. (CVE-2010-3310) Thomas Dreibholz discovered that SCTP did not correctly handle appending packet chunks. A remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2010-3432) Dan Rosenberg discovered that the CD driver did not correctly check parameters. A local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2010-3437) Dan Rosenberg discovered that the Sound subsystem did not correctly validate parameters. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-3442) Dan Rosenberg discovered that SCTP did not correctly handle HMAC calculations. A remote attacker could send specially crafted traffic that would crash the system, leading to a denial of service. (CVE-2010-3705) Brad Spengler discovered that stack memory for new a process was not correctly calculated. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-3858) Dan Rosenberg discovered that the Linux kernel TIPC implementation contained multiple integer signedness errors. A local attacker could exploit this to gain root privileges. (CVE-2010-3859) Kees Cook discovered that the ethtool interface did not correctly clear kernel memory. A local attacker could read kernel heap memory, leading to a loss of privacy. (CVE-2010-3861) Dan Rosenberg discovered that the CAN protocol on 64bit systems did not correctly calculate the size of certain buffers. A local attacker could exploit this to crash the system or possibly execute arbitrary code as the root user. (CVE-2010-3874) Kees Cook and Vasiliy Kulikov discovered that the shm interface did not clear kernel memory correctly. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4072) Dan Rosenberg discovered that IPC structures were not correctly initialized on 64bit systems. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4073) Dan Rosenberg discovered that the RME Hammerfall DSP audio interface driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4080, CVE-2010-4081) Dan Rosenberg discovered that the VIA video driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4082) James Bottomley discovered that the ICP vortex storage array controller driver did not validate certain sizes. A local attacker on a 64bit system could exploit this to crash the kernel, leading to a denial of service. (CVE-2010-4157) Dan Rosenberg discovered that the socket filters did not correctly initialize structure memory. A local attacker could create malicious filters to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4158) Dan Rosenberg discovered that the Linux kernel L2TP implementation contained multiple integer signedness errors. A local attacker could exploit this to to crash the kernel, or possibly gain root privileges. (CVE-2010-4160) Dan Rosenberg discovered that certain iovec operations did not calculate page counts correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4162) Dan Rosenberg discovered multiple flaws in the X.25 facilities parsing. If a system was using X.25, a remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4164) Steve Chen discovered that setsockopt did not correctly check MSS values. A local attacker could make a specially crafted socket call to crash the system, leading to a denial of service. (CVE-2010-4165) Dave Jones discovered that the mprotect system call did not correctly handle merged VMAs. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4169) Dan Rosenberg discovered that the RDS protocol did not correctly check ioctl arguments. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4175) Alan Cox discovered that the HCI UART driver did not correctly check if a write operation was available. If the mmap_min-addr sysctl was changed from the Ubuntu default to a value of 0, a local attacker could exploit this flaw to gain root privileges. (CVE-2010-4242) Brad Spengler discovered that the kernel did not correctly account for userspace memory allocations during exec() calls. A local attacker could exploit this to consume all system memory, leading to a denial of service. (CVE-2010-4243) Vegard Nossum discovered that memory garbage collection was not handled correctly for active sockets. A local attacker could exploit this to allocate all available kernel memory, leading to a denial of service. (CVE-2010-4249) It was discovered that named pipes did not correctly handle certain fcntl calls. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4256) Nelson Elhage discovered that the kernel did not correctly handle process cleanup after triggering a recoverable kernel bug. If a local attacker were able to trigger certain kinds of kernel bugs, they could create a specially crafted process to gain root privileges. (CVE-2010-4258) Kees Cook discovered that some ethtool functions did not correctly clear heap memory. A local attacker with CAP_NET_ADMIN privileges could exploit this to read portions of kernel heap memory, leading to a loss of privacy. (CVE-2010-4655) Frank Arnold discovered that the IGMP protocol did not correctly parse certain packets. A remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-0709). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen2020-06-01
    modified2020-06-02
    plugin id65101
    published2013-03-09
    reporterUbuntu Security Notice (C) 2011-2019 Canonical, Inc. / NASL script (C) 2013-2019 and is owned by Tenable, Inc. or an Affiliate thereof.
    sourcehttps://www.tenable.com/plugins/nessus/65101
    titleUbuntu 10.04 LTS : linux-lts-backport-maverick vulnerabilities (USN-1083-1)

Redhat

advisories
  • rhsa
    idRHSA-2010:0622
  • rhsa
    idRHSA-2010:0627
rpms
  • rhev-hypervisor-0:5.5-2.2.6.1.el5_5rhev2_2
  • rhev-hypervisor-pxe-0:5.5-2.2.6.1.el5_5rhev2_2
  • kmod-kvm-0:83-164.el5_5.21
  • kvm-0:83-164.el5_5.21
  • kvm-debuginfo-0:83-164.el5_5.21
  • kvm-qemu-img-0:83-164.el5_5.21
  • kvm-tools-0:83-164.el5_5.21

Seebug

bulletinFamilyexploit
descriptionBUGTRAQ ID: 42582 CVE ID: CVE-2010-0435 Linux Kernel是开放源码操作系统Linux所使用的内核。 主机系统上的处理器启用了Intel VT-x扩展时存在空指针引用漏洞。如果模拟器受骗模拟了mov to/from DR指令,由于没有初始化kvm_x86_ops-&gt;(set|get)_dr,可能会触发这个空指针引用,导致主机崩溃。 Linux kernel 2.6.x 厂商补丁: Linux ----- 目前厂商已经发布了升级补丁以修复这个安全问题,请到厂商的主页下载: https://patchwork.kernel.org/patch/95725/ RedHat ------ RedHat已经为此发布了一个安全公告(RHSA-2010:0627-01)以及相应补丁: RHSA-2010:0627-01:Important: kvm security and bug fix update 链接:https://www.redhat.com/support/errata/RHSA-2010-0627.html
idSSV:20059
last seen2017-11-19
modified2010-08-24
published2010-08-24
reporterRoot
titleLinux kernel 2.6.x KVM Intel VT-x扩展空指针引用拒绝服务漏洞